Câu hỏi:
12/07/2024 1,883
Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 21). Chứng minh rằng:
Tia AM là tia phân giác của góc BAC và AM \( \bot \) BC.
Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 21). Chứng minh rằng:
Tia AM là tia phân giác của góc BAC và AM \( \bot \) BC.
Quảng cáo
Trả lời:
Vì ∆AMB = ∆AMC nên: MB = MC (hai cạnh tương ứng);
\(\widehat {BAM}\) = \(\widehat {CAM}\), \(\widehat {AMB}\) = \(\widehat {AMC}\) (hai góc tương ứng)
Do tia AM nằm trong góc BAC và \(\widehat {BAM}\) = \(\widehat {CAM}\) nên tia AM là tia phân giác của góc BAC
Ta có \(\widehat {AMB}\) + \(\widehat {AMC}\) = 180o (hai góc kề bù) và \(\widehat {AMB}\) = \(\widehat {AMC}\) nên \(\widehat {AMB}\) = \(\widehat {AMC}\) = 90o.
Vậy AM \( \bot \) BC.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
- Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau và các góc tương ứng bằng nhau.
- Khi hai tam giác ABC và A’B’C’ bằng nhau thì ta kí hiệu là: ∆ABC = ∆A’B’C’.
+ Nếu AB = A’B’, BC = B’C’, CA = C’A’ và \(\widehat A\)= \(\widehat {A'}\), \(\widehat B\)= \(\widehat {B'}\), \(\widehat C\)= \(\widehat {C'}\) thì ∆ABC = ∆A’B’C’.
+ Nếu ∆ABC = ∆A’B’C’ thì AB = A’B’, BC = B’C’, CA = C’A’ và \(\widehat A\)= \(\widehat {A'}\), \(\widehat B\)= \(\widehat {B'}\), \(\widehat C\)= \(\widehat {C'}\).
Lời giải
Vì ∆ABC = ∆MNP nên \(\widehat A\) = \(\widehat M\)( hai góc tương ứng)
Do \(\widehat A\) + \(\widehat N\) = \(\widehat M\) + \(\widehat N\) Mà \(\widehat A\) + \(\widehat N\) = 125o nên \(\widehat M\) + \(\widehat N\) = 125o.
Ta có \(\widehat M\) + \(\widehat N\) + \(\widehat P\) = 180o (tổng ba góc của một tam giác)
Suy ra 125o + \(\widehat P\) = 180o vì thế \(\widehat P\) = 180o – 125o = 55o.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.