Câu hỏi:
29/10/2022 342Cho tam giác PQR có hai đường trung tuyến QM và RK cắt nhau tại G. Gọi I là trung điểm của cạnh QR. Chứng minh rằng ba điểm P, G, I thẳng hàng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hai đường trung tuyến QM và RK cắt nhau tại G nên G là trọng tâm của tam giác PQR. Suy ra điểm G thuộc đường trung tuyến PI của tam giác PQR. Vậy ba điểm P, G, I thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Ba đường trung tyến AM, BN, CP đồng quy tại G. Chứng minh GA + GB + GC = (AM + BN + CP)
Câu 2:
Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Trên tia đối của tia MA lấy điểm D sao cho MD = MG. Chứng minh:
a) GA = GD;
Câu 3:
Cho tam giác ABC cân tại A, hai đường trung tuyến BM và CN cắt nhau tại G. Chứng minh:
a) BM = CN;Câu 4:
- Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng …….... độ dài đường trung tuyến đi qua đỉnh ấy.
Câu 6:
- Trọng tâm của tam giác ABC, với AM là đường trung tuyến và G là trọng tâm (Hình 75) ta có:
, .
Câu 7:
Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Gọi H là hình chiếu của A trên đường thẳng BC. Giả sử H là trung điểm của đoạn thẳng BM. Chứng minh:
a) ∆AHB = ∆AHM;
về câu hỏi!