Câu hỏi:

13/12/2022 12,877 Lưu

Tìm tọa độ giao điểm của đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số  y=x2x+2.

A. 2;2

B. 2;1

C. 2;2

D. 2;1

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

TXĐ  D=\2.

Dễ thấy đồ thị hàm số có TCĐ: x=-2 và TCN: y=1.

Suy ra giao điểm của hai đường tiệm cận là  2;1. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

TXĐ:  D=;21;12;+. Ta có:

l  limx±y=1  y=1 là TCN;

l  limx2y=+  x=2 là TCĐ;

l  limx1+y=+  x=1 là TCĐ;

l  limx1y=+  x=1 là TCĐ;

l  limx2+y=+  x=2 là TCĐ.

Vậy hàm số đã cho có tất cả năm đường tiệm cận.

Chọn C.

Câu 2

AM4;75 hoặc  M2;5.                     

BM4;3 hoặc  M2;1

CM4;3 hoặc  M2;5.                   
DM4;75  hoặc  M2;1.

Lời giải

Gọi  Ma;2a+1a1 với  a1 là điểm thuộc đồ thị.

Đường tiệm cận đứng  d:x=1; đường tiệm cận ngang  d':y=2 .

Ycbt    dM,d=3dM,d'    a1=32a+1a12  

   a12=9    a=4a=2    M4;3M2;1 .

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP