Cho ∆ABC ᔕ ∆A'B'C', biết \(\widehat A = 60^\circ \), \(\widehat {B'} = 50^\circ \). Hãy tính số đo các góc còn lại của tam giác ABC và tam giác A'B'C'.
Quảng cáo
Trả lời:
Lời giải
Vì ∆ABC ᔕ ∆A'B'C' nên \(\widehat A = \widehat {A'} = 60^\circ \), \(\widehat B = \widehat {B'} = 50^\circ \), \(\widehat {C'} = \widehat C\).
Tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (tổng ba góc trong một tam giác) nên:
\(\widehat C = 180^\circ - \widehat A - \widehat B = 180^\circ - 60^\circ - 50^\circ = 70^\circ \).
Do đó, \(\widehat {C'} = \widehat C = 70^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a)
Xét tam giác ABC có:
\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\,\,\,\,\,\,\left( {do\,\,\frac{4}{6} = \frac{6}{9} = \frac{2}{3}} \right)\)
Suy ra MN song song với BC (định lí Thalès đảo)
Do ∆AMN ᔕ ∆ABC với tỉ số đồng dạng \(\frac{2}{3}\) (1).
b)
Tam giác APB và tam giác AMN có:
AP = AM (= 4 cm)
\(\widehat A\) chung
AB = AN (= 6 cm)
Do đó, ∆APB = ∆AMN (c.g.c). Suy ra ∆APB ᔕ ∆AMN (2).
Từ (1) và (2) ta có: ∆APB ᔕ ∆ABC.
Lời giải
Lời giải
Vì ABCD là hình bình hành nên \(\widehat B = \widehat D\), AB = CD, BC = AD.
Do đó, ∆ABC = ∆CDA (c.g.c). Suy ra ∆ABC ᔕ ∆CDA (1).
Tam giác ABC có E, F lần lượt là trung điểm của AB và AC nên EF là đường trung bình tam giác ABC. Do đó, EF // BC.
Tam giác ABC có:
EF // BC nên ∆AEF ᔕ ∆ABC (2).
Từ (1) và (2) suy ra: ∆AEF ᔕ ∆CDA.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.