Câu hỏi:

11/07/2024 1,057 Lưu

Cho tam giác ABC đồng dạng với một tam giác có ba đỉnh là D, E, F. Biết rằng \(\widehat A > \widehat B = 60^\circ = \widehat D > \widehat E\), hãy chỉ ra các đỉnh tương ứng và viết đúng kí hiệu đồng dạng của hai tam giác đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Theo giả thiết ta có: \(\widehat B = \widehat D\).

Vì tổng các góc trong một tam giác bằng 180° nên \(\widehat A > \widehat B = 60^\circ \) > \(\widehat C\) và \(\widehat F > \widehat D = 60^\circ > \widehat E\).

Do hai tam giác đồng dạng thì có các đỉnh tương ứng bằng nhau nên chỉ có thể xảy ra\(\widehat A = \widehat F\), \(\widehat C = \widehat E\), kết hợp với \(\widehat B = \widehat D\). Suy ra ∆ABC ∆FDE.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a)

Xét tam giác ABC có:

\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\,\,\,\,\,\,\left( {do\,\,\frac{4}{6} = \frac{6}{9} = \frac{2}{3}} \right)\)

Suy ra MN song song với BC (định lí Thalès đảo)

Do ∆AMN ∆ABC với tỉ số đồng dạng \(\frac{2}{3}\) (1).

b)

Tam giác APB và tam giác AMN có:

AP = AM (= 4 cm)

\(\widehat A\) chung

AB = AN (= 6 cm)

Do đó, ∆APB = ∆AMN (c.g.c). Suy ra ∆APB ∆AMN (2).

Từ (1) và (2) ta có: ∆APB ∆ABC.

Lời giải

Lời giải

Khi viết ∆ABC ∆MNP thì góc ABC của tam giác CBA tương ứng với góc PNM của tam giác MNP.

Ta có:

Các cặp góc tương ứng bằng nhau: \(\widehat {ABC} = \widehat {MNP},\widehat {BAC} = \widehat {NMP},\widehat {ACB} = \widehat {MPN}\);

Các cặp cạnh tương ứng tỉ lệ: \(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{AC}}{{MP}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP