Câu hỏi:

11/07/2024 706

Cho ∆ABC ∆MNP với AB = 5 cm, AC = 6 cm, BC = 7 cm. Biết rằng tam giác MNP có chu vi bằng 36 cm, hãy tính độ dài các cạnh của tam giác MNP và tỉ số đồng dạng của tam giác ABC với tam giác MNP.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chu vi tam giác ABC là: AB + BC + AC = 5 + 6 + 7 = 18 (cm).

Chu vi tam giác MNP bằng 36 cm nên ta có: MN + NP + MP = 36.

Vì ∆ABC ∆MNP nên \(\frac{{BC}}{{NP}} = \frac{{AC}}{{MP}} = \frac{{AB}}{{MN}}\).

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{{BC}}{{NP}} = \frac{{AC}}{{MP}} = \frac{{AB}}{{MN}} = \frac{{AB + BC + AC}}{{MN + MP + NP}} = \frac{{18}}{{36}} = \frac{1}{2}\).

Do đó, ta có:

NP = 2BC = 2 . 7 = 14 cm.

MP = 2AC = 2 . 6 = 12 cm.

MN = 2AB = 2 . 5 = 10 cm.

Vậy ∆ABC ∆MNP với tỉ số đồng dạng bằng \(\frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A có đường cao AH.

a) Biết AB = 3 cm, AC = 4 cm, hãy tính độ dài các đoạn thẳng AH, BH, CH.

b) Gọi M, N lần lượt là chân các đường vuông góc kẻ từ H đến AB, AC. Chứng minh rằng ∆HMN ∆ABC.

Xem đáp án » 11/07/2024 4,352

Câu 2:

Cho tam giác ABC vuông tại A (AC > AB), có AD là đường phân giác của góc A (D thuộc BC). Qua D vẽ đường thẳng vuông góc với BC cắt cạnh AC tại E và cắt tia BA tại F. Chứng minh rằng:

a) ∆BDF ∆EDC;

b) BD = DE.

Xem đáp án » 11/07/2024 4,244

Câu 3:

Câu nào sau đây là sai ?

A. Hai tam giác có các cặp cạnh tương ứng tỉ lệ thì có các cặp góc tương ứng bằng nhau.

B. Hai tam giác có hai cặp góc tương ứng bằng nhau thì có cặp cạnh tương ứng tỉ lệ.

C. Hai tam giác có một cặp góc tương ứng bằng nhau và hai cặp cạnh tương ứng tỉ lệ thì đồng dạng với nhau.

D. Hai tam giác cùng đồng dạng với một tam giác theo cùng một tỉ số đồng dạng thì bằng nhau.

Xem đáp án » 11/07/2024 3,879

Câu 4:

Cho tam giác ABC với AB > AC. Lấy điểm D trên cạnh AB sao cho AC = AD. Qua D kẻ đường thẳng song song với BC và cắt AC tại E. Qua E kẻ đường thẳng song song với CD và cắt AB tại F. Chứng minh rằng:

a) AD2 = AF . AB.

b) ∆ACF ∆ABC.

Chú ý: Đề trong sách cho D thuộc cạnh BC là sai, cần sửa như trên.

Xem đáp án » 11/07/2024 2,480

Câu 5:

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N, P lần lượt là trung điểm của HA, HB, HC. Chứng minh rằng:

a) ∆MNP ∆ABC và tìm tỉ số đồng dạng.

b) ∆ABN ∆CAM và ∆ACP ∆BAM.

c) AN CM và AP BM.

Xem đáp án » 11/07/2024 2,210

Câu 6:

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là trung điểm của AH, AB. Chứng minh rằng ∆CAM ∆CBN và ∆CHM ∆CAN.

Xem đáp án » 11/07/2024 2,130

Câu 7:

Bộ ba số đo nào dưới đây không là độ dài ba cạnh của một tam giác vuông ?

A. \(\sqrt 2 \)cm, \(\sqrt 2 \)cm, 2 cm.

B. 1 cm, 1 cm, \(\frac{1}{{\sqrt 2 }}\) cm.

C. 2 cm, 4 cm, \(\sqrt {20} \) cm.

D. 3 cm, 4 cm, 5 cm.

Xem đáp án » 11/07/2024 1,309

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store