Câu hỏi:

02/11/2023 814 Lưu

Cho khối lăng trụ đứng ABC.A'B'C'  có đáy ABC là tam giác cân với AB = AC = a, BAC^=120° , mặt phẳng (AB'C') tạo với đáy một góc 60°. Tính thể tích V của khối lăng trụ đã cho. 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Cho D là trung điểm của B¢C¢.

Đáy A¢B¢C¢ cân tại A¢ nên A¢D ^ B¢C¢.

Mà AA¢ ^ B¢C¢ nên B¢C¢ ^ (ADA¢).

Þ B¢C¢ ^ AD.

A'B'C'AB'C'=B'C'B'C'A'DB'C'AD

A'B'C',AB'C'=A'D,AD=ADA'^=60°.

AA'=A'D.tan60°=a32.

VABC.A'B'C'=SABC.CC'=12.AB.AC.sinBAC^.CC'=3a38.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.

Ta có BC // (SAI)

Suy ra d(BC, SA) = d(BC, (SAI))

= d(B, (SAI)) = 32dH,SAI

Gọi K là hình chiếu của H trên SI.

Dễ dàng chứng minh được AI ^ (SHI) Þ AI ^ HK.

Þ HK ^ (SAI) Þ d(H, (SAI)) = HK.

HAI^=180°(60°+60°)=60°

Tam giác AIH vuông tại I:

IH=AH.sin60°=a33.SC,ABC=SC,CH=SCH^=60°.CH2=BC2+BH22.BC.BH.cos60°=7a29CH=a73.

Tam giác SHC vuông tại H: SH=HC.tan60°=a213.

Tam giác SHI vuông tại H:

1HK2=1SH2+1HI2HK=a4212.

dB,SAI=32.HK=a428.

dSA,BC=a428.

           

Lời giải

Media VietJack

a) Ta có: OAOBOAOC

OA(OBC)OABC.1

OHBCOHABC.2

Từ (1) và (2) Þ BC ^ (OAH).

b) Từ a) Þ BC ^ AH.    (*)

Ta dễ dàng chứng minh được OC ^ (OAB) Þ OC ^ AB.       (3)

Lại có: OH ^ AB    (do OH ^ (ABC)) Þ OH ^ AB.         (4)

Từ (3) và (4) Þ AB ^ (OHC) hay AB ^ HC. (**)

Từ (*) và (**) Þ H là trực tâm của tam giác ABC.

c) Dễ thấy OD, OH là các đường cao của tam giác OBC và OAD.

Áp dụng hệ thức lượng trong tam giác vuông, ta có:

1OD2=1OB2+1OC21OH2=1OA2+1OD2

Do đó 1OH2=1OA2+1OB2+1OC2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP