Câu hỏi:

02/11/2023 631

Cho khối lăng trụ đứng ABC.A'B'C'  có đáy ABC là tam giác cân với AB = AC = a, BAC^=120° , mặt phẳng (AB'C') tạo với đáy một góc 60°. Tính thể tích V của khối lăng trụ đã cho. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Cho D là trung điểm của B¢C¢.

Đáy A¢B¢C¢ cân tại A¢ nên A¢D ^ B¢C¢.

Mà AA¢ ^ B¢C¢ nên B¢C¢ ^ (ADA¢).

Þ B¢C¢ ^ AD.

A'B'C'AB'C'=B'C'B'C'A'DB'C'AD

A'B'C',AB'C'=A'D,AD=ADA'^=60°.

AA'=A'D.tan60°=a32.

VABC.A'B'C'=SABC.CC'=12.AB.AC.sinBAC^.CC'=3a38.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.

Ta có BC // (SAI)

Suy ra d(BC, SA) = d(BC, (SAI))

= d(B, (SAI)) = 32dH,SAI

Gọi K là hình chiếu của H trên SI.

Dễ dàng chứng minh được AI ^ (SHI) Þ AI ^ HK.

Þ HK ^ (SAI) Þ d(H, (SAI)) = HK.

HAI^=180°(60°+60°)=60°

Tam giác AIH vuông tại I:

IH=AH.sin60°=a33.SC,ABC=SC,CH=SCH^=60°.CH2=BC2+BH22.BC.BH.cos60°=7a29CH=a73.

Tam giác SHC vuông tại H: SH=HC.tan60°=a213.

Tam giác SHI vuông tại H:

1HK2=1SH2+1HI2HK=a4212.

dB,SAI=32.HK=a428.

dSA,BC=a428.

           

Lời giải

Đáp án đúng là: A

Media VietJack

Ta có: BCABBCSHBC(SAB).

SC,SAB=SC,SB=CSB^=30°.

Xét tam giác SBC vuông tại B có: tan30°=BCSBSB=3a.

Xét tam giác SAB vuông tại A có: SA=SB2AB2=2a2.

Mà SABCD=AB.BC=a23.

Vậy V=13.SABCD.SA=2a363

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP