Câu hỏi:
17/09/2024 800Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O') có đường kính CB.
a) Xác định vị trí tương đối của hai đường tròn (O) và (O').
b) Kẻ dây DE của đường tròn (O) vuông góc với AC tại trung điểm H của AC. Tứ giác ADCE là hình gì? Vì sao?
c) Gọi K là giao điểm của DB và đường tròn (O'). Chứng minh ba điểm E, C, K thẳng hàng.
d) Chứng minh HK là tiếp tuyến của đường tròn (O').
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
(H.5.51)
a) Gọi R, r lần lượt là bán kính của hai đường tròn (O) và (O').
Ta có OO' = R – r nên hai đường tròn (O) và (O') tiếp xúc trong với nhau.
b) Tam giác ODE cân tại O (OD = OE = R) có OH là đường cao nên đồng thời là đường trung tuyến của ∆ODE, hay DH = HE.
Tứ giác ADCE có hai đường chéo AC và DE cắt nhau tại H là trung điểm mỗi đường nên ADCE là hình bình hành. Lại có AC ⊥ DE tại H, suy ra ADCE là hình thoi.
c) Tam giác KCB có đường trung tuyến KO' và KO' = CO' = BO' nên tam giác KCB là tam giác vuông tại K, suy ra \(\widehat {CKB} = 90^\circ \) hay KC ⊥ KB. (1)
Tương tự, ta có \(\widehat {ADB} = 90^\circ \) hay DA ⊥ DB. (2)
Từ (1) và (2) suy ra KC // AD.
Lại có EC // AD (vì ADCE là hình thoi), do đó ba điểm E, C, K thẳng hàng.
d) Xét tam giác DEK vuông tại K có KH là đường trung tuyến nên KH = DH = EH.
Do đó tam giác KHE cân tại H, suy ra \(\widehat {HKE} = \widehat {HEK}.\)
Lại có, ∆O'CK cân tại O' nên \(\widehat {O'CK} = \widehat {O'KC}.\)
\(\widehat {HKE} + \widehat {O'CK} = \widehat {HKE} + \widehat {O'KC}\)
\(\widehat {O'KH} = \widehat {HKE} + \widehat {O'CK}.\)
Mặt khác \(\widehat {O'CK} = \widehat {HCE}\) (hai góc đối đỉnh).
Tam giác HEC vuông tại H nên \(\widehat {KEH} + \widehat {HCE} = 90^\circ .\)
Suy ra \(\widehat {HKE} + \widehat {O'CK} = \widehat {HKE} + \widehat {HCE}\) \( = \widehat {KEH} + \widehat {HCE} = 90^\circ \) hay \(\widehat {O'KH} = 90^\circ .\)
Do đó HK ⊥ O'K.
Vậy HK là tiếp tuyến của đường tròn (O').
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O') tại F (E và F khác A). Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.49).
a) Chứng minh rằng tứ giác OO'KI là một hình thang vuông.
b) Chứng minh rằng \(IK = \frac{1}{2}EF.\)
C) Khi d ở vị trí nào (d vẫn qua A) thì OO'KI là một hình chữ nhật?
Câu 2:
Cho đường tròn (O) đường kính BC và điểm A (khác B và C).
a) Chứng minh rằng nếu A nằm trên (O) thì ABC là một tam giác vuông; ngược lại, nếu ABC là tam giác vuông tại A thì A nằm trên (O).
b) Giả sử A là một trong hai giao điểm của đường tròn (B; BO) với đường tròn (O). Tính các góc của tam giác ABC.
c) Với cùng giả thiết câu b, tính độ dài cung AC và diện tích hình quạt nằm trong (O) giới hạn bởi các bán kính OA và OC, biết rằng BC = 6 cm.
Câu 3:
Cho tam giác vuông ABC (\(\widehat A\) vuông). Vẽ hai đường tròn (B; BA) và (C; CA) cắt nhau tại A và A'. Chứng minh rằng:
a) BA và BA' là hai tiếp tuyến cắt nhau của đường tròn (C; CA);
b) CA và CA' là hai tiếp tuyến cắt nhau của đường tròn (B; BA).
Câu 4:
Cho AB là một dây bất kì (không phải là đường kính) của đường tròn (O; 4 cm). Gọi C và D lần lượt là các điểm đối xứng với A và B qua tâm O.
a) Hai điểm C và D có nằm trên đường tròn (O) không? Vì sao?
b) Biết rằng ABCD là một hình vuông. Tính độ dài cung lớn AB và diện tích hình quạt tròn tạo bởi hai bán kính OA và OB.
Câu 5:
Cho điểm B nằm giữa hai điểm A và C, sao cho AB = 2 cm và BC = 1 cm. Vẽ các đường tròn (A; 1,5 cm), (B; 3 cm) và (C; 2 cm). Hãy xác định các cặp đường tròn:
a) Cắt nhau;
b) Không giao nhau;
c) Tiếp xúc với nhau.
Câu 6:
Chọn phương án đúng.
Cho đường tròn (O; 4 cm) và hai điểm A, B. Biết rằng \[OA = \sqrt {15} \] cm và OB = 4 cm. Khi đó:
A. Điểm A nằm trong (O), điểm B nằm ngoài (O).
B. Điểm A nằm ngoài (O), điểm B nằm trên (O).
C. Điểm A nằm trên (O), điểm B nằm trong (O).
D. Điểm A nằm trong (O), điểm B nằm trên (O).
về câu hỏi!