Câu hỏi:
10/01/2025 803Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G(x) = 0,025x2(30 – x), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng nào để huyết áp bệnh nhân tăng?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: G(x) = 0,75x2 – 0,025x3; G'(x) = 1,5x – 0,075x2; G'(x) = 0 x = 0 hoặc x = 20.
Bảng biến thiên:
Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng (0; 20) thì huyết áp bệnh nhân tăng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Xét hàm số \[y = C(x) = \frac{{30x}}{{{x^2} + 2}}\] trên khoảng x ∈ (0; 6).
Ta có: \[y' = \frac{{ - 30{x^2} + 60}}{{{{\left( {{x^2} + 2} \right)}^2}}}\].
\[y' = 0 \Leftrightarrow \frac{{ - 30{x^2} + 60}}{{{{\left( {{x^2} + 2} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x = - \sqrt 2 \,\end{array} \right.\]do x ∈ (0; 6)\[ \Rightarrow x = \sqrt 2 \].
Bảng biến thiên:
Từ bảng biến thiên suy ra: nồng độ thuốc trong máu C(x) đạt giá trị cực đại là \[\frac{{15\sqrt 2 }}{2}\left( {{\rm{mg/l}}} \right)\] trong khoảng thời gian 6 phút sau khi tiêm.
Lời giải
Đáp án đúng là: D
Ta có v(t) = x'(t) = 3t2 – 12t + 9.
Xét v(t) = 3t2 – 12t + 9
v'(t) = 6t – 12 = 0 t = 2.
Bảng biến thiên
Vận tốc tăng trong khoảng thời gian t ∈ (2; 10) và giảm trong khoảng thời gian t ∈ (0; 2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.