Câu hỏi:

10/01/2025 8

Biết giá trị tham số \(m \in \left[ {a;\frac{b}{c}} \right]\) (với a, b, c ∈ ℤ và \(\frac{b}{c}\) là phân số tối giản) thì hàm số y = x3 – (2m – 1)x2 + (2 – m)x + 2 đồng biến trên trên ℝ. Giá trị biểu thức \(P = \frac{{{a^2} + {b^2}}}{c}.\)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Hàm số đã cho xác định trên D = ℝ.

Để hàm số đồng biến trên ℝ y' = 3x2 – 2(2m – 1)x + (2 – m) ≥ 0, ∀x ∈ ℝ\[ \Leftrightarrow \left\{ \begin{array}{l}a = 3 > 0\\\Delta ' = {\left( {2m - 1} \right)^2} - 3\left( {2 - m} \right) = 4{m^2} - m - 5 \le 0\end{array} \right. \Leftrightarrow - 1 \le m \le \frac{5}{4}\].

Vậy \[ - 1 \le m \le \frac{5}{4}\] thì hàm số đồng biến trên ℝ.

Do \(m \in \left[ {a;\frac{b}{c}} \right]\) nên \(\left\{ \begin{array}{l}a = - 1\\b = 5\\c = 4\end{array} \right. \Rightarrow P = \frac{{{a^2} + {b^2}}}{c} = \frac{{13}}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để hàm số \(f(x) = \frac{1}{3}{x^3} + m{x^2} + 4x + 3\) đồng biến trên .

Xem đáp án » 10/01/2025 17

Câu 2:

Tất cả các giá trị thực của tham số m để hàm số \(y = \frac{{{x^5}}}{5} - \frac{{m{x^4}}}{4} + 2\) đạt cực đại tại x = 0.

Xem đáp án » 10/01/2025 16

Câu 3:

Tập hợp tất cả các giá trị thực của tham số m để hàm số y = x3 – 3x2 + (4 – m)x đồng biến trên khoảng (2; +∞) là

Xem đáp án » 10/01/2025 11

Câu 4:

Có bao nhiêu giá trị nguyên âm của tham số m để hàm số \(y = \frac{{ - 3}}{4}{x^4} + \frac{9}{2}{x^2} - \left( {2m + 15} \right)x - m + 3\) nghịch biến trên khoảng (0; +∞)?

Xem đáp án » 10/01/2025 10

Câu 5:

Biết rằng hàm số y = (x + a)3 + (x + b)3 – x3 có hai điểm cực trị. Mệnh đề nào sau đây là đúng?

Xem đáp án » 10/01/2025 10

Câu 6:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + {m^2}}}{{x + 4}}\) đồng biến trên từng khoảng xác định của nó

Xem đáp án » 10/01/2025 8

Bình luận


Bình luận