Câu hỏi:
10/01/2025 1,177Biết giá trị tham số \(m \in \left[ {a;\frac{b}{c}} \right]\) (với a, b, c ∈ ℤ và \(\frac{b}{c}\) là phân số tối giản) thì hàm số y = x3 – (2m – 1)x2 + (2 – m)x + 2 đồng biến trên trên ℝ. Giá trị biểu thức \(P = \frac{{{a^2} + {b^2}}}{c}.\)
Quảng cáo
Trả lời:
Đáp án đúng là: B
Hàm số đã cho xác định trên D = ℝ.
Để hàm số đồng biến trên ℝ y' = 3x2 – 2(2m – 1)x + (2 – m) ≥ 0, ∀x ∈ ℝ\[ \Leftrightarrow \left\{ \begin{array}{l}a = 3 > 0\\\Delta ' = {\left( {2m - 1} \right)^2} - 3\left( {2 - m} \right) = 4{m^2} - m - 5 \le 0\end{array} \right. \Leftrightarrow - 1 \le m \le \frac{5}{4}\].
Vậy \[ - 1 \le m \le \frac{5}{4}\] thì hàm số đồng biến trên ℝ.
Do \(m \in \left[ {a;\frac{b}{c}} \right]\) nên \(\left\{ \begin{array}{l}a = - 1\\b = 5\\c = 4\end{array} \right. \Rightarrow P = \frac{{{a^2} + {b^2}}}{c} = \frac{{13}}{2}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có y' = 3x2 – 6x + 4 – m.
Yêu cầu bài toán y' ≥ 0, ∀x ∈ (2; +∞)
3x2 – 6x + 4 – m ≥ 0, ∀x ∈ (2; +∞)
m ≤ 3x2 – 6x + 4, ∀x ∈ (2; +∞)
m ≤ \(\mathop {\min }\limits_{\left( {2; + \infty } \right)} g\left( x \right)\) với g(x) = 3x2 – 6x + 4.
Ta có g'(x) = 6x – 6; g'(x) = 0 6x – 6 = 0 x = 1.
Dựa vào bảng biến thiên, suy ra: m ≤ 4 thỏa yêu cầu bài toán.
Vậy: m ∈ (−∞; 4] thì hàm số đồng biến trên khoảng (2; +∞).
Lời giải
Đáp án đúng là: C
y = x3 − 3x2 +3(m + 2)x + 3m – 2025
Hàm số đã cho xác định trên D = ℝ.
Để hàm số đồng biến trên ℝ y' = 3x2 – 6x + 3(m + 2) ≥ 0, ∀x ∈ ℝ
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a > 0}\\{\Delta ' \le 0}\end{array}{\rm{ }} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3 > 0{\rm{ }}}\\{9 - 9(m + 2) \le 0}\end{array} \Leftrightarrow m \ge - 1{\rm{ }}} \right.} \right.\].
Vậy m ≥ −1 thì hàm số đồng biến trên ℝ.
Do m ∈ [−10; 10), m ∈ ℤ nên tổng các giá trị nguyên của tham số là 44.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)