Câu hỏi:

05/06/2025 16

PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN

Quy ước chọn chiều dương của một đường tròn định hướng là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Ta có \(\sin \left( {\frac{\pi }{2} - x} \right) = \cos x;\) \(\sin \left( {10\pi  + x} \right) = \sin x.\)

Và \(\cos \left( {\frac{{3\pi }}{2} - x} \right) = \cos \left( {2\pi  - \frac{\pi }{2} - x} \right) = \cos \left( {\frac{\pi }{2} + x} \right) =  - {\mkern 1mu} \sin x;\) \(\cos \left( {8\pi  - x} \right) = \cos x.\)

Khi đó \({\left[ {\sin \left( {\frac{\pi }{2} - x} \right) + \sin \left( {10\pi  + x} \right)} \right]^{{\kern 1pt} 2}} + {\left[ {\cos \left( {\frac{{3\pi }}{2} - x} \right) + \cos \left( {8\pi  - x} \right)} \right]^{{\kern 1pt} 2}}\)

\( = {\left( {\cos x + \sin x} \right)^2} + {\left( {\cos x - \sin x} \right)^2}\)

\( = {\cos ^2}x + 2.\sin x.\cos x + {\sin ^2}x + {\cos ^2}x - 2.\sin x.\cos x + {\sin ^2}x = 2.\)

Câu 2

Cho bốn cung (trên một đường tròn định hướng): \[\alpha  =  - \frac{{5\pi }}{6},\] \[\beta  = \frac{\pi }{{\rm{3}}}\], \[\gamma  = \frac{{{\rm{25}}\pi }}{{\rm{3}}},\] \[\delta  = \frac{{{\rm{19}}\pi }}{{\rm{6}}}\]. Các cung nào có điểm cuối trùng nhau?

Lời giải

Đáp án đúng là: B

Cách 1. Ta có \(\delta  - \alpha  = 4\pi \,\, \Rightarrow \) hai cung \(\alpha \) và \(\delta \) có điểm cuối trùng nhau.

Và \(\gamma  - \beta  = 8\pi \,\, \Rightarrow \) hai cung \(\beta \) và \(\gamma \) có điểm cuối trùng nhau.

Cách 2. Gọi \(A,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} B,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} C,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} D\) là điểm cuối của các cung \(\alpha ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \gamma ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \delta \)

Biểu diễn các cung trên đường tròn lượng giác ta có \(B \equiv C,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} A \equiv D.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Biết \(A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\) là các góc của tam giác \[ABC,\]mệnh đề nào sau đây đúng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay