Câu hỏi:

05/06/2025 69 Lưu

Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình \(x = 2\cos \left( {5t - \frac{\pi }{6}} \right)\).

Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khi vật đi qua vị trí cân bằng thì \(x = 0\), ta có:

\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)

\( \Leftrightarrow 5t = \frac{{2\pi }}{3} + k\pi \) , \(k \in \mathbb{Z}\)\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5}\),\(k \in \mathbb{Z}\).

Trong khoảng thời gian từ 0 đến 6 giây, ta có: \(0 \le \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le 6\)\( \Leftrightarrow \frac{{ - 2}}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\).

kk0;1;2;3;4;5;6;7;8

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.

Đáp án: \(9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

\(\cos 3x = \cos 12^\circ \)\( \Leftrightarrow \cos 3x = \cos \frac{\pi }{{15}}\)

\( \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Hạ bậc hai vế, ta được phương trình \(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2}\).

Ta có\(\cos \left( {2x + \pi } \right) = - \cos 2x\) (Áp dụng giá trị lượng giác của 2 cung hơn kém \(\pi \)).

\(\frac{{1 - \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 + \cos \left( {2x + \pi } \right)}}{2} \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = \cos \left( {2x + \pi } \right) \Leftrightarrow - \cos \left( {4x + \frac{\pi }{2}} \right) = - \cos \left( {2x} \right)\).

\[ \Leftrightarrow \cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x \Leftrightarrow \left[ \begin{array}{l}4x + \frac{\pi }{2} = 2x + k2\pi \\4x + \frac{\pi }{2} = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{{12}} + k\frac{\pi }{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\].

Đáp án:           a) Sai,             b) Đúng,         c) Đúng,          d) Sai.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP