Hình vẽ dưới đây cho ta đồ thị của ba hàm số
f (x) = \[\frac{1}{2}{x^2}\]; g(x) = \[\left\{ \begin{array}{l}\frac{1}{2}{x^2}{\rm{ , x}} \le {\rm{2}}\\ - 4x + 10{\rm{ , x}} \ge {\rm{2}}\end{array} \right.\] và h(x) = \[3 - \frac{1}{2}{x^2}\] trên đoạn [−1; 3].

a) Hàm số nào đạt giá trị lớn nhất tại một điểm cực đại của nó?
b) Các hàm số còn lại đạt giá trị lớn nhất tại điểm nào?
Quảng cáo
Trả lời:

Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số \(f(x) = 2x + 3\) trên đoạn \([ - 3;1]\).
Với mọi \(x \in [ - 3;1]\), ta có \(f(x) = 2x + 3 \ge - 3\). Mặt khác \(f( - 3) = - 3\). Do đó \({\min _{[ - 3;1]}}f(x) = - 3\).
Với mọi \(x \in [ - 3;1]\), ta có \(f(x) = 2x + 3 \le 5\). Mặt khác \(f(1) = 5\). Do đó \({\max _{[ - 3;1]}}f(x) = 5\).
Lời giải
Xét hàm số \(g(x) = \sqrt {1 - {x^2}} \).
Tập xác định: \(D = [ - 1;1]\).
Ta có \(0 \le g(x) \le 1\) với mọi \(x \in [ - 1;1]\). Mặt khác \(g(0) = 1\) và \(g(1) = 0\).
Do đó \({\min _{[ - 1;1]}}g(x) = 0\) và \({\max _{[ - 1;1]}}g(x) = 1\).