Một trang sách có dạng hình chữ nhật với diện tích là 384 cm2. Sau khi để lề trên và lề dưới đều là 3 cm, để lề trái và lề phải đều là 2 cm. Phần còn lại của trang sách được in chữ. Kích thước tối ưu của trang sách là bao nhiêu để phần in chữ trên trang sách có diện tích lớn nhất?
Quảng cáo
Trả lời:


Gọi \({\rm{x}}({\rm{cm}})\) là chiều rộng của trang sách.
Khi đó, chiều dài của trang sách là \(\frac{{384}}{x}(\;{\rm{cm}})\).
Sau khi đế lề thì phần in chữ có dạng hình chữ nhật có chiều rộng là \(x - 4(\;{\rm{cm}})\) và chiều dài là \(\frac{{384}}{x} - 6(\;{\rm{cm}})\).
Rõ ràng, \({\rm{x}}\) phải thóa mãn điều kiện \(4 < x < 64\).
Diện tích phần in chữ trên trang sách là: \(S(x) = (X - 4)\left( {\frac{{384}}{x} - 6} \right) = \frac{{ - 6{x^2} + 408x - 1536}}{x}\left( {\;{\rm{c}}{{\rm{m}}^2}} \right){\rm{. }}\)
Xét hàm số \({\rm{S}}({\rm{X}}) = \frac{{ - 6{x^2} + 408x - 1536}}{x}\) với \({\rm{x}} \in (4;64)\).
Ta có \(S(x) = \frac{{ - 6{x^2} + 1536}}{{{x^2}}} < 0\); \(S(x) = 0 \Leftrightarrow - 6{x^2} + 1536 = 0 \Leftrightarrow x = - 16{\rm{ ho?c }}x = 16.{\rm{ }}\)
Khi đó trên khoảng \((4;64),S(x) = 0\) khi \(x = 16\).
Bảng biến thiên của hàm số \(S(x)\) như sau:

Căn cứ vào bảng biến thiên, ta thấy: Trên khoảng \((4;64)\), hàm số \(S(x)\) đạt giá trị lớn nhất bẳng 216 tại \(x = 16\). Khi đó, \(\frac{{384}}{{16}} = 24\).
Vậy kích thước tối ưu của trang sách là \(16 \times 24(\;{\rm{cm}})\) thì in chữ trền trang sách có diện tích lớn nhất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xem bể chứa có dạng hình hộp chữ nhật ABCD.A’B’C’D’ như hình vẽ trên
Gọi x (m) là chiều rộng của bể, ta có \[0 < x \le 4\].
Chiều dài của bể là 2x (m).
Gọi h (m) là chiều cao bể nước, ta có thể tích của bể là V = x.(2x).h.
Suy ra: \[h = \frac{V}{{2{x^2}}} = \frac{{36}}{{2{x^2}}} = \frac{{18}}{{{x^2}}}{\rm{ }}(m)\]
Tổng diện tích các mặt cần xây là:
\[S = {S_{ABCD}} + 2{S_{ABB'A'}} + 2{S_{BCC'B'}} = 2{x^2} + 2.x.\frac{{18}}{{{x^2}}} + 2.2x.\frac{{18}}{{{x^2}}} = 2{x^2} + \frac{{108}}{x}\]
Xét hàm số \[S(x) = 2{x^2} + \frac{{108}}{x}(0 < x \le 4)\], ta có: \[S'(x) = 4x - \frac{{108}}{{{x^2}}} = \frac{{4{x^3} - 108}}{{{x^2}}} = \frac{{4(x - 3)({x^2} + 3x + 9)}}{{{x^2}}}\]
\[S'(x) = 0 \Leftrightarrow x = 3\]
Bảng biến thiên:

Chi phí vật liệu xây dựng thấp nhất khi tổng diện tích các mặt cần xây S(x) là nhỏ nhất.
Dựa vào bảng biến thiên, ta có S(x) đạt giá trị nhỏ nhất tại x = 3, suy ra h = 2.
Vậy cần xây bể có chiều cao là 2 (m).
Lời giải
Xét hàm số \(f(x) = \left( {{x_0} - x} \right){x^2}\) với \({x_0}\) cố định và \(\frac{1}{2}{x_0} \le x \le {x_0}\).
Do \(k\) là hằng số nên vận tốc của luồng khí một cơn ho lớn nhất khi \(f(x)\) đạt giá trị lớn nhất.
Ta có \(f(x) = - {x^3} + {x_0}{x^2}\);
\({f^\prime }(x) = - 3{x^2} + 2{x_0}x;{\rm{ }}{f^\prime }(x) = 0 \Leftrightarrow x = 0{\rm{ hoac }}x = \frac{2}{3}{x_0}.\)
Bảng biến thiên:

Dựa vào bảng biến thiên, ta có \({\max _{\left[ {\frac{1}{2}{x_j}{x_0}} \right]}}f(x) = f\left( {\frac{2}{3}{x_0}} \right)\).
Vậy vận tốc của luồng khí một cơn ho lớn nhất khi \(x = \frac{2}{3}{x_0}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.