Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng 108 cm2 như Hình vẽ. Tìm các kích thước của chiếc hộp sao cho thể tích của hộp là lớn nhất.
Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng 108 cm2 như Hình vẽ. Tìm các kích thước của chiếc hộp sao cho thể tích của hộp là lớn nhất.

Quảng cáo
Trả lời:

Hình hộp trên có độ dài cạnh đáy là \({\rm{x}}({\rm{cm}},x > 0)\) và chiều cao là \({\rm{h}}({\rm{cm}},h > 0)\)
Diện tích bề mặt của hình hộp là \(108\;{\rm{c}}{{\rm{m}}^2}\) nên \({x^2} + 4xh = 108 \Rightarrow h = \frac{{108 - {x^2}}}{{4x}}(\;{\rm{cm}})\)
Thể tích của hình hộp là: \(V = {x^2} \cdot h = {x^2} \cdot \frac{{108 - {x^2}}}{{4x}} = \frac{{108x - {x^3}}}{4}\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\)
Ta có: \({V^\prime } = \frac{{ - 3{x^2} + 108}}{4},{V^\prime } = 0 \Leftrightarrow x = 6\) (do \(x > 0\) )
Bảng biến thiên:

Do đó, thể tích của hình hộp là lớn nhất khi độ dài cạnh đáy \(x = 6\;{\rm{cm}}\) Khi đó, chiều cao của hình hộp là: \(\frac{{108 - {6^2}}}{{4.6}} = 3(\;{\rm{cm}})\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xem bể chứa có dạng hình hộp chữ nhật ABCD.A’B’C’D’ như hình vẽ trên
Gọi x (m) là chiều rộng của bể, ta có \[0 < x \le 4\].
Chiều dài của bể là 2x (m).
Gọi h (m) là chiều cao bể nước, ta có thể tích của bể là V = x.(2x).h.
Suy ra: \[h = \frac{V}{{2{x^2}}} = \frac{{36}}{{2{x^2}}} = \frac{{18}}{{{x^2}}}{\rm{ }}(m)\]
Tổng diện tích các mặt cần xây là:
\[S = {S_{ABCD}} + 2{S_{ABB'A'}} + 2{S_{BCC'B'}} = 2{x^2} + 2.x.\frac{{18}}{{{x^2}}} + 2.2x.\frac{{18}}{{{x^2}}} = 2{x^2} + \frac{{108}}{x}\]
Xét hàm số \[S(x) = 2{x^2} + \frac{{108}}{x}(0 < x \le 4)\], ta có: \[S'(x) = 4x - \frac{{108}}{{{x^2}}} = \frac{{4{x^3} - 108}}{{{x^2}}} = \frac{{4(x - 3)({x^2} + 3x + 9)}}{{{x^2}}}\]
\[S'(x) = 0 \Leftrightarrow x = 3\]
Bảng biến thiên:

Chi phí vật liệu xây dựng thấp nhất khi tổng diện tích các mặt cần xây S(x) là nhỏ nhất.
Dựa vào bảng biến thiên, ta có S(x) đạt giá trị nhỏ nhất tại x = 3, suy ra h = 2.
Vậy cần xây bể có chiều cao là 2 (m).
Lời giải
Xét hàm số \(f(x) = \left( {{x_0} - x} \right){x^2}\) với \({x_0}\) cố định và \(\frac{1}{2}{x_0} \le x \le {x_0}\).
Do \(k\) là hằng số nên vận tốc của luồng khí một cơn ho lớn nhất khi \(f(x)\) đạt giá trị lớn nhất.
Ta có \(f(x) = - {x^3} + {x_0}{x^2}\);
\({f^\prime }(x) = - 3{x^2} + 2{x_0}x;{\rm{ }}{f^\prime }(x) = 0 \Leftrightarrow x = 0{\rm{ hoac }}x = \frac{2}{3}{x_0}.\)
Bảng biến thiên:

Dựa vào bảng biến thiên, ta có \({\max _{\left[ {\frac{1}{2}{x_j}{x_0}} \right]}}f(x) = f\left( {\frac{2}{3}{x_0}} \right)\).
Vậy vận tốc của luồng khí một cơn ho lớn nhất khi \(x = \frac{2}{3}{x_0}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.