Một hồ nược nhân tạo được xây dựng trong một công viên giải trí. Trong mô hình minh hoạ (Hình vẽ), nó được giối hạn bởi các trục toạ độ và đồ thị của hàm số \(y = f(x) = \frac{1}{{10}}\left( { - {x^3} + 9{x^2} - 15x + 56} \right)\). Đơn vị đo độ dài trên mỗi trục tọa độ là \(100\;{\rm{m}}\)
(Nguồn: \({\rm{A}}\). Bigalke et al, Mathematik, Grundkurs ma-1, Cornelsen 2010).
a) Đường dạo ven hổ chạy dọc theo trục Ox dài bao nhiêu mét?
b) Tại những điểm nào trên đường đi dạo ven hồ (chạy dọc theo trục Ox) thì khoảng cách theo phương thẳng đứng đến bờ hổ đối diện là lôn nhất? Tìm khoảng cách lớn nhất đó.
c) Trong công viên có một con đường chạy dọc theo đồ thị hàm số \(y = - 1,5x + 18\). Người ta dự định xây dựng bên bờ hổ một bến thuyền đạp nước sao cho khoảng cách từ bến thuyển đến con đường này là ngắn nhất. Tìm tọ̣a độ của điểm để xây bến thuyền này.
Một hồ nược nhân tạo được xây dựng trong một công viên giải trí. Trong mô hình minh hoạ (Hình vẽ), nó được giối hạn bởi các trục toạ độ và đồ thị của hàm số \(y = f(x) = \frac{1}{{10}}\left( { - {x^3} + 9{x^2} - 15x + 56} \right)\). Đơn vị đo độ dài trên mỗi trục tọa độ là \(100\;{\rm{m}}\)
(Nguồn: \({\rm{A}}\). Bigalke et al, Mathematik, Grundkurs ma-1, Cornelsen 2010).
a) Đường dạo ven hổ chạy dọc theo trục Ox dài bao nhiêu mét?
b) Tại những điểm nào trên đường đi dạo ven hồ (chạy dọc theo trục Ox) thì khoảng cách theo phương thẳng đứng đến bờ hổ đối diện là lôn nhất? Tìm khoảng cách lớn nhất đó.
c) Trong công viên có một con đường chạy dọc theo đồ thị hàm số \(y = - 1,5x + 18\). Người ta dự định xây dựng bên bờ hổ một bến thuyền đạp nước sao cho khoảng cách từ bến thuyển đến con đường này là ngắn nhất. Tìm tọ̣a độ của điểm để xây bến thuyền này.
Quảng cáo
Trả lời:
a) Trong Hình 25 , đồ thị của hàm số \(y = f(x) = \frac{1}{{10}}\left( { - {x^3} + 9{x^2} - 15x + 56} \right)\) cắt tia $O x$ tại điềm có hoành độ \(x = 8\). Vậy đường dạo ven hồ chạy dọc theo trục Ox dài \(800\;{\rm{m}}\).
b) Ta khảo sát hàm số: \(f(x) = \frac{1}{{10}}\left( { - {x^3} + 9{x^2} - 15x + 56} \right)\) vổi \(0 \le x \le 8\).
\({f^\prime }(x) = \frac{1}{{10}}\left( { - 3{x^2} + 18x - 15} \right)\); \({f^\prime }(x) = 0 \Leftrightarrow - {x^2} + 6x - 5 = 0 \Leftrightarrow x = 1{\rm{ hoac }}x = 5.\)
Bảng biến thiên:

Căn cử bảng biến thiên, ta có: \({\max _{[0,8]}}f(x) = f(5) = 8,1\) tại \(x = 5\).
Vậy khoảng cách lôn nhất theo phương thẳng đứng từ một điểm trên đường đi dạo ven hồ (chạy dọc theo trục Ox) đến bờ hồ đối diện là:
\(100.\left( {{{\max }_{[0,81}}f(x)} \right) = 100 \cdot f(5) = 100 \cdot 8,1 = 810(\;{\rm{m}})\)
c) Xét điểm \(M(x;f(x))\) thuộc đồ thị hàm số \(y = f(x) = \frac{1}{{10}}\left( { - {x^3} + 9{x^2} - 15x + 56} \right)\) với \(0 \le x \le 8\).
Khoảng cách từ điểm \(M(x;f(x))\) đến đường thẳng \(y = - 1,5x + 18 \Leftrightarrow - 1,5x - y + 18 = 0\) là:
\(MH = \frac{{\left| { - 1,5x - \frac{1}{{10}}\left( { - {x^3} + 9{x^2} - 15x + 56} \right) + 18} \right|}}{{\sqrt {{{( - 1,5)}^2} + 1} }} = \frac{{\left| {{x^3} - 9{x^2} + 124} \right|}}{{10\sqrt {3,25} }}.\)
Ta khảo sát hàm số: \(h(x) = {x^3} - 9{x^2} + 124\) với \(0 \le x \le 8\).
\({h^\prime }(x) = 3{x^2} - 18x{\rm{; }}{h^\prime }(x) = 0 \Leftrightarrow {x^2} - 6x = 0 \Leftrightarrow x = 0{\rm{ hoac }}x = 6\)
Bảng biến thiên:

Căn cứ bảng biến thiên, ta có: \(h(x) > 0\) với \(0 \le x \le 8\);
\({\min _{[0,8]}}h(x) = h(6) = 16{\rm{ tai }}x = 6.{\rm{ }}\)
Do đó, \(\min MH = {\min _{[0,8]}}\frac{{\left| {{x^3} - 9{x^2} + 124} \right|}}{{10\sqrt {3,25} }} = \frac{1}{{10\sqrt {3,25} }} \cdot {\min _{[0,8]}}h(x) = \frac{{16}}{{10\sqrt {3,25} }} \approx 0,8875\) và đạt được tại \(x = 6\). Khi đó, \(f(6) = 7,4\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xem bể chứa có dạng hình hộp chữ nhật ABCD.A’B’C’D’ như hình vẽ trên
Gọi x (m) là chiều rộng của bể, ta có \[0 < x \le 4\].
Chiều dài của bể là 2x (m).
Gọi h (m) là chiều cao bể nước, ta có thể tích của bể là V = x.(2x).h.
Suy ra: \[h = \frac{V}{{2{x^2}}} = \frac{{36}}{{2{x^2}}} = \frac{{18}}{{{x^2}}}{\rm{ }}(m)\]
Tổng diện tích các mặt cần xây là:
\[S = {S_{ABCD}} + 2{S_{ABB'A'}} + 2{S_{BCC'B'}} = 2{x^2} + 2.x.\frac{{18}}{{{x^2}}} + 2.2x.\frac{{18}}{{{x^2}}} = 2{x^2} + \frac{{108}}{x}\]
Xét hàm số \[S(x) = 2{x^2} + \frac{{108}}{x}(0 < x \le 4)\], ta có: \[S'(x) = 4x - \frac{{108}}{{{x^2}}} = \frac{{4{x^3} - 108}}{{{x^2}}} = \frac{{4(x - 3)({x^2} + 3x + 9)}}{{{x^2}}}\]
\[S'(x) = 0 \Leftrightarrow x = 3\]
Bảng biến thiên:

Chi phí vật liệu xây dựng thấp nhất khi tổng diện tích các mặt cần xây S(x) là nhỏ nhất.
Dựa vào bảng biến thiên, ta có S(x) đạt giá trị nhỏ nhất tại x = 3, suy ra h = 2.
Vậy cần xây bể có chiều cao là 2 (m).
Lời giải
Tập xác định: \({\rm{D}} = {\rm{R}}\).
Có \({y^\prime } = - \frac{{15\left( {9{t^2} + 1} \right) - 270{t^2}}}{{{{\left( {9{t^2} + 1} \right)}^2}}} = - \frac{{ - 135{t^2} + 15}}{{{{\left( {9{t^2} + 1} \right)}^2}}} = \frac{{135{t^2} - 15}}{{{{\left( {9{t^2} + 1} \right)}^2}}}\)
Có \({{\rm{y}}^\prime } = 0 \Leftrightarrow 135{{\rm{t}}^2} - 15 = 0 \Leftrightarrow t = \frac{1}{3}({\rm{vt}} \ge 0)\)
Bảng biến thiên

Dựa vào bảng biến thiên ta có: Thời điểm nồng độ oxygen trong nước cao nhất là \(t = 0\) và thấp nhất \(t = \frac{1}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.