Một hình tam giác ABC có D là điểm chính giữa của BC, E là điểm chính giữa của CA, AD cắt BE ở G. Hãy chứng tỏ AG gấp đôi GD.
Một hình tam giác ABC có D là điểm chính giữa của BC, E là điểm chính giữa của CA, AD cắt BE ở G. Hãy chứng tỏ AG gấp đôi GD.
Quảng cáo
Trả lời:

Nối C với G.
Ta có: \({S_{BCE}} = {S_{ACD}}\) (Vì cùng bằng \(\frac{1}{2}{S_{ABC}}\))
Mà: \({S_{BCE}} = {S_{GBD}} + {S_{CDGE}}\) và \({S_{ACD}} = {S_{GAE}} + {S_{CDGE}}\)
\( \Rightarrow {S_{GBD}} = {S_{GAE}} = \frac{1}{2}{S_{GAC}}\) (1)
Cũng có: \({S_{GBD}} = {S_{GCD}}\) (chung chiều cao hạ từ G, đáy \(BD = CD\)) (2)
Từ (1) và (2) suy ra: \({S_{GCD}} = \frac{1}{2}{S_{GAC}}\) mà hai tam giác này chung chiều cao hạ từ C nên: \(GD = \frac{1}{2}GA\) hay GA gấp đôi GD. (đpcm)
Đáp Số: gấp đôi.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\({S_{MBCN}} = {S_{BMN}} + {S_{BCN}} = \frac{2}{3} \times {S_{NAB}} + \frac{1}{4} \times {S_{ABC}}\)
\( = \frac{2}{3} \times \frac{3}{4} \times {S_{ABC}} + \frac{1}{4} \times {S_{ABC}} = \frac{3}{4} \times {S_{ABC}} = 180{\rm{ c}}{{\rm{m}}^2}\)
\({S_{ABC}} = 180 \times 4:3 = 240{\rm{ c}}{{\rm{m}}^2}\).
Đáp Số: \(240{\rm{ c}}{{\rm{m}}^2}\)
Lời giải
Vì \(BP = \frac{1}{2}PA;CQ = \frac{1}{3}QA\) nên có:
\({S_{IAP}} = 2 \times {S_{IBP}}\); \({S_{IAQ}} = 3 \times {S_{ICQ}}\);
\({S_{IAP}} + {S_{IAQ}} + {S_{IBQ}} = \frac{2}{3} \times {S_{ABC}}\)
\({S_{IBP}} + {S_{IAP}} + {S_{IAQ}} = \frac{3}{4} \times {S_{ABC}}\)
Từ đó có được:
\({S_{IBP}} = \frac{1}{6} \times {S_{ABC}};{S_{IAP}} = \frac{1}{3} \times {S_{ABC}};{S_{IAQ}} = \frac{1}{4} \times {S_{ABC}};{S_{ICQ}} = \frac{1}{{12}} \times {S_{ABC}}\)
Vậy: \(\frac{{BJ}}{{JC}} = \frac{{{S_{IBJ}}}}{{{S_{ICJ}}}} = \frac{{{S_{IAP}} + {S_{IBP}} + {S_{IBJ}}}}{{{S_{IAQ}} + {S_{ICQ}} + {S_{ICJ}}}} = \frac{{{S_{IAP}} + {S_{IBP}}}}{{{S_{IAQ}} + {S_{ICQ}}}} = \frac{{\frac{1}{3} \times {S_{ABC}} + \frac{1}{6} \times {S_{ABC}}}}{{\frac{1}{4} \times {S_{ABC}} + \frac{1}{{12}} \times {S_{ABC}}}} = \frac{{\frac{1}{2}}}{{\frac{1}{3}}} = \frac{3}{2}\)
Đáp Số: \(\frac{{BJ}}{{JC}} = \frac{3}{2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.