Câu hỏi:

02/08/2025 2 Lưu

Một hình tam giác ABC có D là điểm chính giữa của BC, E là điểm chính giữa của CA, AD cắt BE ở G. Hãy chứng tỏ AG gấp đôi GD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hãy chứng tỏ AG gấp đôi GD. (ảnh 1)

Nối C với G.

Ta có: \({S_{BCE}} = {S_{ACD}}\) (Vì cùng bằng \(\frac{1}{2}{S_{ABC}}\))

Mà: \({S_{BCE}} = {S_{GBD}} + {S_{CDGE}}\)\({S_{ACD}} = {S_{GAE}} + {S_{CDGE}}\)

\( \Rightarrow {S_{GBD}} = {S_{GAE}} = \frac{1}{2}{S_{GAC}}\) (1)

Cũng có: \({S_{GBD}} = {S_{GCD}}\) (chung chiều cao hạ từ G, đáy \(BD = CD\)) (2)

Từ (1) và (2) suy ra: \({S_{GCD}} = \frac{1}{2}{S_{GAC}}\) mà hai tam giác này chung chiều cao hạ từ C nên: \(GD = \frac{1}{2}GA\) hay GA gấp đôi GD. (đpcm)

Đáp Số: gấp đôi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

\(BP = \frac{1}{2}PA;CQ = \frac{1}{3}QA\) nên có:

\({S_{IAP}} = 2 \times {S_{IBP}}\); \({S_{IAQ}} = 3 \times {S_{ICQ}}\);

\({S_{IAP}} + {S_{IAQ}} + {S_{IBQ}} = \frac{2}{3} \times {S_{ABC}}\)

\({S_{IBP}} + {S_{IAP}} + {S_{IAQ}} = \frac{3}{4} \times {S_{ABC}}\)

Từ đó có được:

\({S_{IBP}} = \frac{1}{6} \times {S_{ABC}};{S_{IAP}} = \frac{1}{3} \times {S_{ABC}};{S_{IAQ}} = \frac{1}{4} \times {S_{ABC}};{S_{ICQ}} = \frac{1}{{12}} \times {S_{ABC}}\)

Vậy: \(\frac{{BJ}}{{JC}} = \frac{{{S_{IBJ}}}}{{{S_{ICJ}}}} = \frac{{{S_{IAP}} + {S_{IBP}} + {S_{IBJ}}}}{{{S_{IAQ}} + {S_{ICQ}} + {S_{ICJ}}}} = \frac{{{S_{IAP}} + {S_{IBP}}}}{{{S_{IAQ}} + {S_{ICQ}}}} = \frac{{\frac{1}{3} \times {S_{ABC}} + \frac{1}{6} \times {S_{ABC}}}}{{\frac{1}{4} \times {S_{ABC}} + \frac{1}{{12}} \times {S_{ABC}}}} = \frac{{\frac{1}{2}}}{{\frac{1}{3}}} = \frac{3}{2}\)

Đáp Số: \(\frac{{BJ}}{{JC}} = \frac{3}{2}\)

Lời giải

v (ảnh 1)

a) Nối B với E.

Có: \({S_{ABE}} = \frac{1}{5} \times {S_{ABC}}\) (Do chung chiều cao hạ từ B và \(AE = \frac{1}{5}AC\))

\({S_{ADE}} = \frac{1}{5} \times {S_{ABE}}\) (Do chung chiều cao hạ từ E và \(AD = \frac{1}{5}AB\))

Do đó: \({S_{ADE}} = \frac{1}{{25}} \times {S_{ABC}}\)

b/ Tương tự phần a tính được: \({S_{BMN}} = {S_{CGH}} = \frac{1}{{25}} \times {S_{ABC}}\)

Suy ra: \({S_{ADE}} + {S_{BMN}} + {S_{CGH}} = \frac{3}{{25}} \times {S_{ABC}}\)

Suy ra: \({S_{DEHGMN}} = {S_{ABC}} - \frac{3}{{25}} \times {S_{ABC}} = \frac{{22}}{{25}} \times {S_{ABC}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP