Câu hỏi:

19/08/2025 32 Lưu

Một hình tam giác ABC có D là điểm chính giữa của BC, E là điểm chính giữa của CA, AD cắt BE ở G. Hãy chứng tỏ AG gấp đôi GD.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hãy chứng tỏ AG gấp đôi GD. (ảnh 1)

Nối C với G.

Ta có: \({S_{BCE}} = {S_{ACD}}\) (Vì cùng bằng \(\frac{1}{2}{S_{ABC}}\))

Mà: \({S_{BCE}} = {S_{GBD}} + {S_{CDGE}}\)\({S_{ACD}} = {S_{GAE}} + {S_{CDGE}}\)

\( \Rightarrow {S_{GBD}} = {S_{GAE}} = \frac{1}{2}{S_{GAC}}\) (1)

Cũng có: \({S_{GBD}} = {S_{GCD}}\) (chung chiều cao hạ từ G, đáy \(BD = CD\)) (2)

Từ (1) và (2) suy ra: \({S_{GCD}} = \frac{1}{2}{S_{GAC}}\) mà hai tam giác này chung chiều cao hạ từ C nên: \(GD = \frac{1}{2}GA\) hay GA gấp đôi GD. (đpcm)

Đáp Số: gấp đôi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hai hình tam giác MBE và NBE có chung đáy BE và có hai đường cao bằng nhau (vẽ từ M và N xuống BE - đường cao của hình thang BMNE). Do đó hai hình tam giác này có diện tích bằng nhau. Vì OBE là phần chung nên suy ra các phần còn lại của chúng là OBM và OEN có diện tích bằng nhau.

b) Hai hình tam giác NAB và NBC có diện tích bằng nhau vì có chung đường cao vẽ từ B và NA = NC. Mặt khác diện tích OMB và diện tích OEN bằng nhau. Suy ra diện tích EMC bằng diện tích AEMB.

Lời giải

\({S_{MBCN}} = {S_{BMN}} + {S_{BCN}} = \frac{2}{3} \times {S_{NAB}} + \frac{1}{4} \times {S_{ABC}}\)

\( = \frac{2}{3} \times \frac{3}{4} \times {S_{ABC}} + \frac{1}{4} \times {S_{ABC}} = \frac{3}{4} \times {S_{ABC}} = 180{\rm{ c}}{{\rm{m}}^2}\)

\({S_{ABC}} = 180 \times 4:3 = 240{\rm{ c}}{{\rm{m}}^2}\).

Đáp Số: \(240{\rm{ c}}{{\rm{m}}^2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP