Một hình tam giác ABC có D là điểm chính giữa của BC, E là điểm chính giữa của CA, AD cắt BE ở G. Hãy chứng tỏ AG gấp đôi GD.
Một hình tam giác ABC có D là điểm chính giữa của BC, E là điểm chính giữa của CA, AD cắt BE ở G. Hãy chứng tỏ AG gấp đôi GD.
Quảng cáo
Trả lời:

Nối C với G.
Ta có: \({S_{BCE}} = {S_{ACD}}\) (Vì cùng bằng \(\frac{1}{2}{S_{ABC}}\))
Mà: \({S_{BCE}} = {S_{GBD}} + {S_{CDGE}}\) và \({S_{ACD}} = {S_{GAE}} + {S_{CDGE}}\)
\( \Rightarrow {S_{GBD}} = {S_{GAE}} = \frac{1}{2}{S_{GAC}}\) (1)
Cũng có: \({S_{GBD}} = {S_{GCD}}\) (chung chiều cao hạ từ G, đáy \(BD = CD\)) (2)
Từ (1) và (2) suy ra: \({S_{GCD}} = \frac{1}{2}{S_{GAC}}\) mà hai tam giác này chung chiều cao hạ từ C nên: \(GD = \frac{1}{2}GA\) hay GA gấp đôi GD. (đpcm)
Đáp Số: gấp đôi.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\({S_{MBCN}} = {S_{BMN}} + {S_{BCN}} = \frac{2}{3} \times {S_{NAB}} + \frac{1}{4} \times {S_{ABC}}\)
\( = \frac{2}{3} \times \frac{3}{4} \times {S_{ABC}} + \frac{1}{4} \times {S_{ABC}} = \frac{3}{4} \times {S_{ABC}} = 180{\rm{ c}}{{\rm{m}}^2}\)
\({S_{ABC}} = 180 \times 4:3 = 240{\rm{ c}}{{\rm{m}}^2}\).
Đáp Số: \(240{\rm{ c}}{{\rm{m}}^2}\)
Lời giải
\({S_{ADE}} = \frac{1}{2} \times {S_{EAB}} = \frac{1}{2} \times \frac{2}{3} \times {S_{ABC}} = \frac{1}{3} \times {S_{ABC}} = \frac{1}{3} \times 180 = 60(c{m^2})\)
Đáp Số: 60 cm²
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.