14 bài tập Giải toán liên quan đến tỉ lệ diện tích tam giác có lời giải
52 người thi tuần này 4.6 80 lượt thi 14 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu trắc nghiệm Toán lớp 5 Kết nối tri thức Ôn tập số tự nhiên có đáp án
Bài tập cuối tuần Toán lớp 5 KNTT Tuần 1 có đáp án
Tổng hợp đề thi vào lớp 6 cực hay, có lời giải chi tiết (Đề số 1)
Trắc nghiệm Bài tập lý thuyết Thể tích hình hộp chữ nhật có đáp án
10 câu trắc nghiệm Toán lớp 5 Kết nối tri thức Ôn tập các phép tính với số tự nhiên có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
\({S_{MBCN}} = {S_{BMN}} + {S_{BCN}} = \frac{2}{3} \times {S_{NAB}} + \frac{1}{4} \times {S_{ABC}}\)
\( = \frac{2}{3} \times \frac{3}{4} \times {S_{ABC}} + \frac{1}{4} \times {S_{ABC}} = \frac{3}{4} \times {S_{ABC}} = 180{\rm{ c}}{{\rm{m}}^2}\)
\({S_{ABC}} = 180 \times 4:3 = 240{\rm{ c}}{{\rm{m}}^2}\).
Đáp Số: \(240{\rm{ c}}{{\rm{m}}^2}\)
Lời giải
Nối C với G.
Ta có: \({S_{BCE}} = {S_{ACD}}\) (Vì cùng bằng \(\frac{1}{2}{S_{ABC}}\))
Mà: \({S_{BCE}} = {S_{GBD}} + {S_{CDGE}}\) và \({S_{ACD}} = {S_{GAE}} + {S_{CDGE}}\)
\( \Rightarrow {S_{GBD}} = {S_{GAE}} = \frac{1}{2}{S_{GAC}}\) (1)
Cũng có: \({S_{GBD}} = {S_{GCD}}\) (chung chiều cao hạ từ G, đáy \(BD = CD\)) (2)
Từ (1) và (2) suy ra: \({S_{GCD}} = \frac{1}{2}{S_{GAC}}\) mà hai tam giác này chung chiều cao hạ từ C nên: \(GD = \frac{1}{2}GA\) hay GA gấp đôi GD. (đpcm)
Đáp Số: gấp đôi.
Lời giải
Vì \(BP = \frac{1}{2}PA;CQ = \frac{1}{3}QA\) nên có:
\({S_{IAP}} = 2 \times {S_{IBP}}\); \({S_{IAQ}} = 3 \times {S_{ICQ}}\);
\({S_{IAP}} + {S_{IAQ}} + {S_{IBQ}} = \frac{2}{3} \times {S_{ABC}}\)
\({S_{IBP}} + {S_{IAP}} + {S_{IAQ}} = \frac{3}{4} \times {S_{ABC}}\)
Từ đó có được:
\({S_{IBP}} = \frac{1}{6} \times {S_{ABC}};{S_{IAP}} = \frac{1}{3} \times {S_{ABC}};{S_{IAQ}} = \frac{1}{4} \times {S_{ABC}};{S_{ICQ}} = \frac{1}{{12}} \times {S_{ABC}}\)
Vậy: \(\frac{{BJ}}{{JC}} = \frac{{{S_{IBJ}}}}{{{S_{ICJ}}}} = \frac{{{S_{IAP}} + {S_{IBP}} + {S_{IBJ}}}}{{{S_{IAQ}} + {S_{ICQ}} + {S_{ICJ}}}} = \frac{{{S_{IAP}} + {S_{IBP}}}}{{{S_{IAQ}} + {S_{ICQ}}}} = \frac{{\frac{1}{3} \times {S_{ABC}} + \frac{1}{6} \times {S_{ABC}}}}{{\frac{1}{4} \times {S_{ABC}} + \frac{1}{{12}} \times {S_{ABC}}}} = \frac{{\frac{1}{2}}}{{\frac{1}{3}}} = \frac{3}{2}\)
Đáp Số: \(\frac{{BJ}}{{JC}} = \frac{3}{2}\)
Lời giải
Vì \(MN//BC \Rightarrow MNBC\) là hình thang.
Nối BN, CM
\({S_{BCM}} = \frac{1}{3}{S_{ABC}}\) (\(BM = 30 - 20 = 10{\rm{ cm, }}\frac{{BM}}{{AB}} = \frac{{10}}{{30}} = \frac{1}{3}\), chung chiều cao hạ từ C)
\({S_{BMC}} = {S_{BNC}}\) (chung đáy BC, chiều cao là chiều cao hình thang MNBC)
Mà \({S_{ABC}} = 30 \times 45:2 = 675{\rm{ c}}{{\rm{m}}^2}\)
\( \Rightarrow {S_{BNC}} = 675 \times \frac{1}{3} = 225{\rm{ c}}{{\rm{m}}^2}\)
Độ dài NC = \(225 \times 2:30 = 15{\rm{ cm}}\)
Độ dài AN = \(45 - 15 = 30{\rm{ cm}}\)
\({S_{AMN}} = 30 \times 20:2 = 300{\rm{ c}}{{\rm{m}}^2}\)
Đáp Số: \(300{\rm{ c}}{{\rm{m}}^2}\).
Lời giải
a) Nối B với E.
Có: \({S_{ABE}} = \frac{1}{5} \times {S_{ABC}}\) (Do chung chiều cao hạ từ B và \(AE = \frac{1}{5}AC\))
Và \({S_{ADE}} = \frac{1}{5} \times {S_{ABE}}\) (Do chung chiều cao hạ từ E và \(AD = \frac{1}{5}AB\))
Do đó: \({S_{ADE}} = \frac{1}{{25}} \times {S_{ABC}}\)
b/ Tương tự phần a tính được: \({S_{BMN}} = {S_{CGH}} = \frac{1}{{25}} \times {S_{ABC}}\)
Suy ra: \({S_{ADE}} + {S_{BMN}} + {S_{CGH}} = \frac{3}{{25}} \times {S_{ABC}}\)
Suy ra: \({S_{DEHGMN}} = {S_{ABC}} - \frac{3}{{25}} \times {S_{ABC}} = \frac{{22}}{{25}} \times {S_{ABC}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.