Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm M sao cho \(BM = \frac{1}{3}AB\). Trên cạnh AC lấy điểm N sao cho \(AN = \frac{1}{4}AC\). Trên cạnh BC lấy điểm E sao cho E là điểm chính giữa cạnh BC.
a) Chứng tỏ rằng \({S_{MNCB}} = \frac{5}{6}{S_{ABC}}\)
b) Chứng tỏ rằng \({S_{AMN}} = {S_{EMB}}\)
c) Biết \({S_{ABC}} = 24c{m^2}\). Tính \({S_{EMN}}\)

Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm M sao cho \(BM = \frac{1}{3}AB\). Trên cạnh AC lấy điểm N sao cho \(AN = \frac{1}{4}AC\). Trên cạnh BC lấy điểm E sao cho E là điểm chính giữa cạnh BC.
a) Chứng tỏ rằng \({S_{MNCB}} = \frac{5}{6}{S_{ABC}}\)
b) Chứng tỏ rằng \({S_{AMN}} = {S_{EMB}}\)
c) Biết \({S_{ABC}} = 24c{m^2}\). Tính \({S_{EMN}}\)

Quảng cáo
Trả lời:
a) Ta có \({S_{ABC}} = \frac{{AB \times AC}}{2}\) (1)
\(BM = \frac{1}{3}AB \Rightarrow AM = \frac{2}{3}AB\)
Ta có: \({S_{AMN}} = \frac{{AM \times AN}}{2} = \frac{1}{2} \times \left( {\frac{2}{3}AB} \right) \times \left( {\frac{1}{4}AC} \right) = \frac{1}{{12}} \times AB \times AC = \frac{1}{6} \times \frac{{AB \times AC}}{2}\) (2)
Từ (1), (2): \({S_{AMN}} = \frac{1}{6}{S_{ABC}}\) (3)
Vì \({S_{AMN}} + {S_{MNCB}} = {S_{ABC}}\) nên \({S_{MNCB}} = \frac{5}{6}{S_{ABC}}\)
b) Nối A với E. Vì E là điểm chính giữa BC nên \(BE = EC = \frac{1}{2}BC\).
Ta có: \({S_{EMB}} = \frac{1}{3}{S_{EAB}}\) (Vì có chung chiều cao hạ từ E và có đáy \(MB = \frac{1}{3}AB\))
\({S_{EAB}} = \frac{1}{2}{S_{ABC}}\) (Vì có chung chiều cao hạ từ A và có đáy \(BE = \frac{1}{2}BC\))
Suy ra: \({S_{EMB}} = \frac{1}{3} \times \frac{1}{2}{S_{ABC}} = \frac{1}{6}{S_{ABC}}\) (4)
Từ (3), (4): \({S_{AMN}} = {S_{EMB}}\)
c) Vì \(AN = \frac{1}{4}AC\) nên \(NC = \frac{3}{4}AC\)
Ta có:
\({S_{ENC}} = \frac{3}{4}{S_{AEC}}\) (Vì có chung chiều cao hạ từ E và có đáy \(NC = \frac{3}{4}AC\))
\({S_{AEC}} = \frac{1}{2}{S_{ABC}}\) (Vì có chung chiều cao hạ từ A và có đáy \(EC = \frac{1}{2}BC\))
Suy ra \({S_{ENC}} = \frac{3}{4} \times \frac{1}{2}{S_{ABC}} = \frac{3}{8}{S_{ABC}}\) (5)
Ta có \({S_{EMN}} = {S_{ABC}} - {S_{AMN}} - {S_{EMB}} - {S_{ENC}}\)
Từ (3), (4) và (5) ta có \({S_{EMN}} = {S_{ABC}} - \frac{1}{6}{S_{ABC}} - \frac{1}{6}{S_{ABC}} - \frac{3}{8}{S_{ABC}}\)
\( = (1 - \frac{1}{6} - \frac{1}{6} - \frac{3}{8}) \times {S_{ABC}} = \frac{7}{{24}}{S_{ABC}} = \frac{7}{{24}} \times 24 = 7(c{m^2})\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({S_{EAB}} = \frac{1}{3}{S_{ABC}} = \frac{1}{3} \times 180 = 60(c{m^2})\)
Mà \(BD = \frac{1}{3}AB\) nên \(AD = \frac{2}{3}AB\) nên: \({S_{ADE}} = \frac{2}{3}{S_{EAB}} = \frac{2}{3} \times 60 = 40(c{m^2})\)
Mặt khác: \({S_{GBC}} = \frac{1}{3}{S_{ABC}} = \frac{1}{3} \times 180 = 60(c{m^2})\)
Mà \(CH = \frac{1}{3}BC\) nên \({S_{GHC}} = \frac{1}{3} \times {S_{GBC}} = \frac{1}{3} \times 60 = 20(c{m^2})\)
Do đó: \({S_{BDEGH}} = {S_{ABC}} - {S_{ADE}} - {S_{GHC}} = 180 - 40 - 20 = 120(c{m^2})\)
Đáp Số: 120 cm²
Lời giải
a) Hai hình tam giác MBE và NBE có chung đáy BE và có hai đường cao bằng nhau (vẽ từ M và N xuống BE - đường cao của hình thang BMNE). Do đó hai hình tam giác này có diện tích bằng nhau. Vì OBE là phần chung nên suy ra các phần còn lại của chúng là OBM và OEN có diện tích bằng nhau.
b) Hai hình tam giác NAB và NBC có diện tích bằng nhau vì có chung đường cao vẽ từ B và NA = NC. Mặt khác diện tích OMB và diện tích OEN bằng nhau. Suy ra diện tích EMC bằng diện tích AEMB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



