Cho hình thang ABCD có hai đáy là AB và CD. Đoạn thẳng AC cắt đoạn thẳng BD tại O:
a) So sánh diện tích hai hình tam giác DAO và BCO.
b) Biết diện tích hình tam giác BAO bằng 1 cm² và diện tích hình tam giác DCO bằng 4cm². Tính diện tích hình thang ABCD
c) Tính tỷ số hai đáy của hình thang \(\frac{{AB}}{{CD}}\)?
Cho hình thang ABCD có hai đáy là AB và CD. Đoạn thẳng AC cắt đoạn thẳng BD tại O:
a) So sánh diện tích hai hình tam giác DAO và BCO.
b) Biết diện tích hình tam giác BAO bằng 1 cm² và diện tích hình tam giác DCO bằng 4cm². Tính diện tích hình thang ABCD
c) Tính tỷ số hai đáy của hình thang \(\frac{{AB}}{{CD}}\)?
Quảng cáo
Trả lời:
a) Hai tam giác ACD và BCD có chung đáy CD, hai đường cao hạ từ A, B xuống CD là bằng nhau và cùng bằng đường cao của hình thang ABCD. Do đó:
\({S_{ACD}} = {S_{BCD}}\)
Suy ra: \({S_{DAO}} = {S_{BCO}}\) (1)
b) Hai tam giác BAO và BCO có chung đường cao hạ từ B) do đó: \(\frac{{{S_{BAO}}}}{{{S_{BCO}}}} = \frac{{AO}}{{CO}}\)
Hai tam giác DAO và DCO có chung đường cao hạ từ D xuống, do đó:
\(\frac{{{S_{DAO}}}}{{{S_{DCO}}}} = \frac{{AO}}{{CO}} \Rightarrow \frac{{{S_{BAO}}}}{{{S_{BCO}}}} = \frac{{{S_{DAO}}}}{{{S_{DCO}}}} \Rightarrow {S_{DAO}} \times {S_{DAO}} = {S_{BAO}} \times {S_{DCO}}\)
Theo đề bài, \({S_{BAO}} = 1c{m^2}\), \({S_{DCO}} = 4c{m^2}\)
\( \Rightarrow {S_{DAO}} \times {S_{DAO}} = 1 \times 4 = 2 \times 2\)
\( \Rightarrow {S_{DAO}} = 2c{m^2}\)
Diện tích hình thang ABCD:
\({S_{ABCD}} = {S_{DAO}} + {S_{BAO}} + {S_{BCO}} + {S_{DCO}} = 2 + 1 + 2 + 4 = 9(c{m^2})\)
c) Hai tam giác ABC và BDC có hai đường cao hạ từ C và B xuống hai đáy AB và CD bằng nhau và cùng bằng đường cao của hình thang ABCD.
Suy ra: \(\frac{{AB}}{{CD}} = \frac{{{S_{ABC}}}}{{{S_{BCD}}}} = \frac{{({S_{BAO}} + {S_{BCO}})}}{{({S_{DCO}} + {S_{BCO}})}} = \frac{{1 + 2}}{{4 + 2}} = \frac{3}{6} = \frac{1}{2}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Nối B với E.
Có: \({S_{ABE}} = \frac{1}{5} \times {S_{ABC}}\) (Do chung chiều cao hạ từ B và \(AE = \frac{1}{5}AC\))
Và \({S_{ADE}} = \frac{1}{5} \times {S_{ABE}}\) (Do chung chiều cao hạ từ E và \(AD = \frac{1}{5}AB\))
Do đó: \({S_{ADE}} = \frac{1}{{25}} \times {S_{ABC}}\)
b/ Tương tự phần a tính được: \({S_{BMN}} = {S_{CGH}} = \frac{1}{{25}} \times {S_{ABC}}\)
Suy ra: \({S_{ADE}} + {S_{BMN}} + {S_{CGH}} = \frac{3}{{25}} \times {S_{ABC}}\)
Suy ra: \({S_{DEHGMN}} = {S_{ABC}} - \frac{3}{{25}} \times {S_{ABC}} = \frac{{22}}{{25}} \times {S_{ABC}}\)
Lời giải
a) Ta có \({S_{ABC}} = \frac{{AB \times AC}}{2}\) (1)
\(BM = \frac{1}{3}AB \Rightarrow AM = \frac{2}{3}AB\)
Ta có: \({S_{AMN}} = \frac{{AM \times AN}}{2} = \frac{1}{2} \times \left( {\frac{2}{3}AB} \right) \times \left( {\frac{1}{4}AC} \right) = \frac{1}{{12}} \times AB \times AC = \frac{1}{6} \times \frac{{AB \times AC}}{2}\) (2)
Từ (1), (2): \({S_{AMN}} = \frac{1}{6}{S_{ABC}}\) (3)
Vì \({S_{AMN}} + {S_{MNCB}} = {S_{ABC}}\) nên \({S_{MNCB}} = \frac{5}{6}{S_{ABC}}\)
b) Nối A với E. Vì E là điểm chính giữa BC nên \(BE = EC = \frac{1}{2}BC\).
Ta có: \({S_{EMB}} = \frac{1}{3}{S_{EAB}}\) (Vì có chung chiều cao hạ từ E và có đáy \(MB = \frac{1}{3}AB\))
\({S_{EAB}} = \frac{1}{2}{S_{ABC}}\) (Vì có chung chiều cao hạ từ A và có đáy \(BE = \frac{1}{2}BC\))
Suy ra: \({S_{EMB}} = \frac{1}{3} \times \frac{1}{2}{S_{ABC}} = \frac{1}{6}{S_{ABC}}\) (4)
Từ (3), (4): \({S_{AMN}} = {S_{EMB}}\)
c) Vì \(AN = \frac{1}{4}AC\) nên \(NC = \frac{3}{4}AC\)
Ta có:
\({S_{ENC}} = \frac{3}{4}{S_{AEC}}\) (Vì có chung chiều cao hạ từ E và có đáy \(NC = \frac{3}{4}AC\))
\({S_{AEC}} = \frac{1}{2}{S_{ABC}}\) (Vì có chung chiều cao hạ từ A và có đáy \(EC = \frac{1}{2}BC\))
Suy ra \({S_{ENC}} = \frac{3}{4} \times \frac{1}{2}{S_{ABC}} = \frac{3}{8}{S_{ABC}}\) (5)
Ta có \({S_{EMN}} = {S_{ABC}} - {S_{AMN}} - {S_{EMB}} - {S_{ENC}}\)
Từ (3), (4) và (5) ta có \({S_{EMN}} = {S_{ABC}} - \frac{1}{6}{S_{ABC}} - \frac{1}{6}{S_{ABC}} - \frac{3}{8}{S_{ABC}}\)
\( = (1 - \frac{1}{6} - \frac{1}{6} - \frac{3}{8}) \times {S_{ABC}} = \frac{7}{{24}}{S_{ABC}} = \frac{7}{{24}} \times 24 = 7(c{m^2})\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.