Câu hỏi:

19/08/2025 23 Lưu

Hai anh em xuất phát cùng nhau ở vạch đích và chạy ngược chiều nhau trên một đường đua vòng tròn quanh sân vận động. Anh chạy nhanh hơn và khi chạy được 900m thì gặp em lần thứ nhất. Họ tiếp tục chạy như vậy và gặp nhau lần thứ 2, lần thứ 3. Đúng lần gặp nhau lần thứ 3 thì họ dừng lại ở đúng vạch xuất phát ban đầu. Tìm vận tốc mỗi người, biết người em đã chạy tất cả mất 9 phút.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Sau mỗi lần gặp nhau thì cả hai người đã chạy được một quãng đường đúng bằng một vòng đua. Vậy 3 lần gặp nhau thì cả hai người chạy được 3 vòng đua.

Mà hai người xuất phát cùng một lúc tại cùng một điểm rồi lại dừng lại tại đúng điểm xuất phát nên mỗi người chạy được một số nguyên vòng đua.

\(3 = 1 + 2\) và anh chạy nhanh hơn em nên anh chạy được 2 vòng đua và em chạy được 2 vòng đua.

Vậy sau 3 lần gặp nhau anh chạy được quãng đường là:

\(900 \times 3 = 2700\) (m)

Một vòng đua dài là: \(2700:2 = 1350\) (m)

Vận tốc của em là: \(1350:9 = 150\) (m/phút)

Vận tốc của anh là: \(2700:9 = 300\) (m/phút)

Đáp Số: Anh: 300 m/phút; Em: 150 m/phút

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tỉ số thời gian của ôtô và xe máy đi trên AB là: \(2:3 = \frac{2}{3}\)

Trên cùng một quãng đường AB, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch. Do đó, tỉ số vận tốc của ôtô và xe máy đi trên AB là: \(\frac{3}{2}\).

Ta có sơ đồ:

Nếu hai xe khởi hành cùng một lúc thì chúng gặp nhau cách A bao nhiêu kilômét? (ảnh 1)

Vận tốc của ôtô là: \(20:(3 - 2) \times 3 = 60\) (km/giờ)

Quãng đường AB dài là: \(60 \times 2 = 120\) (km)

Vận tốc của xe máy là: \(60 - 20 = 40\) (km/giờ)

Nếu cùng khởi hành hai xe sẽ gặp nhau sau một thời gian là:

\(120:(60 + 40) = 1,2\) (giờ)

Địa điểm gặp nhau cách A là: \(60 \times 1,2 = 72\) (km)

Đáp Số: Quãng đường AB dài: 60km

Địa điểm gặp nhau cách A: 72km

Lời giải

Hỏi xe gắn máy sẽ ở đúng điểm chính giữa khoảng cách giữa hai xe đạp lúc mấy giờ? (ảnh 1)

Giả sử khi xe gắn máy đi từ A tới C thì nó ở chính giữa hai xe đạp. Lúc đó, xe đạp đi từ A tới D, còn xe đạp đi từ B tới E.

Ta có: AC là trung bình cộng của AD và AE. Hay \(2 \times AC = AD + AE\).

Gọi thời gian xe máy đi đến điểm chính giữa hai xe đạp là t (giờ), ta có:

\(2 \times 20 \times t = 12 \times t + 88 - 16 \times t\). Hay \(40 \times t = 88 - 4 \times t\).

\(44 \times t = 88\) suy ra \(t = 88:44 = 2\) (giờ)

Vậy xe gắn máy sẽ ở đúng điểm chính giữa khoảng cách giữa hai xe đạp lúc:

\(6 + 2 = 8\) (giờ)

Đáp Số: 8 giờ.