Hai anh em xuất phát cùng nhau ở vạch đích và chạy ngược chiều nhau trên một đường đua vòng tròn quanh sân vận động. Anh chạy nhanh hơn và khi chạy được 900m thì gặp em lần thứ nhất. Họ tiếp tục chạy như vậy và gặp nhau lần thứ 2, lần thứ 3. Đúng lần gặp nhau lần thứ 3 thì họ dừng lại ở đúng vạch xuất phát ban đầu. Tìm vận tốc mỗi người, biết người em đã chạy tất cả mất 9 phút.
Hai anh em xuất phát cùng nhau ở vạch đích và chạy ngược chiều nhau trên một đường đua vòng tròn quanh sân vận động. Anh chạy nhanh hơn và khi chạy được 900m thì gặp em lần thứ nhất. Họ tiếp tục chạy như vậy và gặp nhau lần thứ 2, lần thứ 3. Đúng lần gặp nhau lần thứ 3 thì họ dừng lại ở đúng vạch xuất phát ban đầu. Tìm vận tốc mỗi người, biết người em đã chạy tất cả mất 9 phút.
Quảng cáo
Trả lời:
Sau mỗi lần gặp nhau thì cả hai người đã chạy được một quãng đường đúng bằng một vòng đua. Vậy 3 lần gặp nhau thì cả hai người chạy được 3 vòng đua.
Mà hai người xuất phát cùng một lúc tại cùng một điểm rồi lại dừng lại tại đúng điểm xuất phát nên mỗi người chạy được một số nguyên vòng đua.
Mà \(3 = 1 + 2\) và anh chạy nhanh hơn em nên anh chạy được 2 vòng đua và em chạy được 2 vòng đua.
Vậy sau 3 lần gặp nhau anh chạy được quãng đường là:
\(900 \times 3 = 2700\) (m)
Một vòng đua dài là: \(2700:2 = 1350\) (m)
Vận tốc của em là: \(1350:9 = 150\) (m/phút)
Vận tốc của anh là: \(2700:9 = 300\) (m/phút)
Đáp Số: Anh: 300 m/phút; Em: 150 m/phút
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tỉ số thời gian của ôtô và xe máy đi trên AB là: \(2:3 = \frac{2}{3}\)
Trên cùng một quãng đường AB, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch. Do đó, tỉ số vận tốc của ôtô và xe máy đi trên AB là: \(\frac{3}{2}\).
Ta có sơ đồ:

Vận tốc của ôtô là: \(20:(3 - 2) \times 3 = 60\) (km/giờ)
Quãng đường AB dài là: \(60 \times 2 = 120\) (km)
Vận tốc của xe máy là: \(60 - 20 = 40\) (km/giờ)
Nếu cùng khởi hành hai xe sẽ gặp nhau sau một thời gian là:
\(120:(60 + 40) = 1,2\) (giờ)
Địa điểm gặp nhau cách A là: \(60 \times 1,2 = 72\) (km)
Đáp Số: Quãng đường AB dài: 60km
Địa điểm gặp nhau cách A: 72km
Lời giải
Giải:
Thời gian người thứ nhất xuất phát trước người thứ hai là: 7 giờ – 6 giờ = 1 giờ.
Khi người thứ hai xuất phát thì người thứ nhất đã đi được quãng đường là:
\(30 \times 1 = 30\) (km)
Khi người thứ hai bắt đầu xuất phát thì khoảng cách giữa hai người là:
\(186 - 30 = 156\) (km)
Thời gian để hai người gặp nhau là:
\(156:(30 + 35) = 2,4\) (giờ)
Vậy hai người gặp nhau lúc:
7 giờ + 2 giờ 24 phút = 9 giờ 24 phút
Chỗ gặp nhau cách điểm A: \(30 + 2,4 \times 30 = 102\) (km)
Đáp Số: 102 km và 9 giờ 24 phút
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.