Câu hỏi:

03/08/2025 5 Lưu

Cho tam giác \(ABC\,\,\left( {AB < AC} \right),AD\) là phân giác trong của góc \(A\). Qua trung điểm \(M\) của cạnh \(BC\), ta kẻ đường thẳng song song với \(AD\), cắt cạnh \(AC\) tại \(E\) và cắt tia \(BA\) tại \(F\). Biết rằng \(AB = 6\) và \(4BD = 3BM\). Tính \(\left| {\overrightarrow {CM}  - \overrightarrow {EM} } \right|\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C (ảnh 1)

Ta có \(\overrightarrow {CM}  - \overrightarrow {EM}  = \overrightarrow {CM}  + \overrightarrow {ME}  = \overrightarrow {CE} \).

Ta có \(ME\parallel AD \Rightarrow \frac{{CE}}{{CA}} = \frac{{CM}}{{CD}}\left( 1 \right)\); \(AD\parallel MF \Rightarrow \frac{{BA}}{{BF}} = \frac{{BD}}{{BM}}\left( 2 \right)\).

Nhân vế theo vế (1) và (2) kết hợp với \(BM = CM\), ta được: \(\frac{{CE}}{{BF}} \cdot \frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}(3)\).

Theo giả thiết, \(AD\) là phân giác của góc \(A\) nên \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) (4).

Từ (3) và (4) suy ra \(\frac{{CE}}{{BF}} = 1 \Rightarrow CE = BF\) (5).

Từ (2): \(\frac{{BA}}{{BF}} = \frac{{BD}}{{BM}} = \frac{3}{4} \Rightarrow BF = \frac{4}{3}BA = \frac{4}{3} \cdot 6 = 8\) (6).

Từ (5) và (6) suy ra \(CE = BF = 8\).

Vậy \(\left| {\overrightarrow {CM}  - \overrightarrow {EM} } \right| = \left| {\overrightarrow {CE} } \right| = CE = 8\).

Đáp án: 8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

\[\overrightarrow {MC}  - \overrightarrow {MB}  + \overrightarrow {BM}  + \overrightarrow {MA}  = \overrightarrow {CM}  - \overrightarrow {CB} \]\[ \Leftrightarrow \overrightarrow {BC}  + \overrightarrow {BA}  = \overrightarrow {BM} \,\]\[ \Leftrightarrow \overrightarrow {BC}  - \overrightarrow {BM} \, = \overrightarrow {AB} \]\[ \Leftrightarrow \overrightarrow {CM}  = \overrightarrow {BA} \].

Suy ra \(M\) là điểm thỏa \[ABCM\] là hình bình hành. Nên \[\overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BM} \].

Câu 2

Lời giải

Đáp án đúng là: B

Ta có \(\left| {\overrightarrow {CB}  - \overrightarrow {AD}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB}  + \overrightarrow {DA}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB}  + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right|\).

V (ảnh 1)

Gọi H, K là chân đường cao hạ từ A, D xuống BC.

Khi đó tam giác ABH vuông tại H. Mà \(\widehat {ABC} = 45^\circ \). Suy ra tam giác ABH vuông cân tại H.

Do đó AH = BH = 2a.

Suy ra BK = BH + HK = BH + AD = 4a.

Xét tam giác \(BDK\) vuông tại K, ta có \(BD = \sqrt {D{K^2} + B{K^2}}  = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {4a} \right)}^2}}  = 2a\sqrt 5 \).

Vậy \(\left| {\overrightarrow {CB}  - \overrightarrow {AD}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {DB} } \right| = BD = 2a\sqrt 5 \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP