Câu hỏi:

03/08/2025 33 Lưu

Cho hình vuông \(ABCD\) có độ dài cạnh bằng \(2\). Tính \(\overrightarrow {AB} \cdot \overrightarrow {AD} \). 

A. \(\overrightarrow {AB} \cdot \overrightarrow {AD} = 0\).           
B. \(\overrightarrow {AB} \cdot \overrightarrow {AD} = 4\).                                     
C. \(\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow 0 \).       
D. \(\overrightarrow {AB} \cdot \overrightarrow {AD} = - 4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Vì \(ABCD\) là hình vuông nên \(AB \bot AD\) do đó \(\overrightarrow {AB}  \cdot \overrightarrow {AD}  = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[\overrightarrow a  \cdot \overrightarrow b  = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 3 \cdot 2 \cdot \cos 120^\circ  =  - 3\].

\[{\left| {\overrightarrow a  - 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a  - 2\overrightarrow b } \right)^2} = {\overrightarrow a ^2} - 4\overrightarrow a  \cdot \overrightarrow b  + 4{\overrightarrow b ^2} = {\left| {\overrightarrow a } \right|^2} - 4\overrightarrow a  \cdot \overrightarrow b  + 4{\left| {\overrightarrow b } \right|^2} = {3^2} - 4 \cdot \left( { - 3} \right) + 4 \cdot {2^2} = 37\]

\[ \Rightarrow \left| {\overrightarrow a  - 2\overrightarrow b } \right| = \sqrt {37}  \approx 6,1\].

Đáp án: 6,1.

Câu 2

A. \(120^\circ \).                             
B. \(60^\circ \).            
C. \(30^\circ \).                                    
D. \(150^\circ \).

Lời giải

Đáp án đúng là: A

V (ảnh 1)

Dựng vectơ \[\overrightarrow {AA'}  = \overrightarrow {BC} \] khi đó ta có \(\left( {\overrightarrow {AB} ,\;\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\;\overrightarrow {AA'} } \right) = \widehat {BAA'}\).

Vì \[\overrightarrow {AA'}  = \overrightarrow {BC}  \Rightarrow BC{\rm{//}}AA' \Rightarrow \widehat {CAA'} = \widehat {ACB} = \widehat {BAC}\;\; = 60^\circ \].

Do đó \(\left( {\overrightarrow {AB} ,\;\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\;\overrightarrow {AA'} } \right) = \widehat {BAA'} = \widehat {BAC}\; + \widehat {CAA'}\; = 60^\circ  + 60^\circ  = 120^\circ \).

Câu 3

A. \(y = - 9\).                  
B. \(\left[ \begin{array}{l}y = - 1\\y = 9\end{array} \right.\).                                      
C. \(\left[ \begin{array}{l}y = 1\\y = - 9\end{array} \right.\).                          
D. \(y = - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(k = 7\).                     
B. \(k = 8\).                   
C. \(k = 10\).                                 
D. \(k = - 10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP