Câu hỏi:

03/08/2025 7 Lưu

Phần II. Trắc nghiệm đúng, sai

Cho hình chữ nhật \(ABCD,AB = 4a,AD = 3a\). Gọi \(M\) là trung điểm của \(AB,G\) là trọng tâm tam giác \(ACM\).

 V (ảnh 1)

a) \(\overrightarrow {CM}  = \frac{1}{2}\overrightarrow {BA}  - 3\overrightarrow {BC} \).

b) \(\overrightarrow {BG}  = \frac{3}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} .\)

c) \(\overrightarrow {BC}  \cdot \overrightarrow {BA}  = 0\).

d) \(\overrightarrow {BG}  \cdot \overrightarrow {CM}  =  - {a^2}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Sai. Ta có \(\overrightarrow {CM}  = \overrightarrow {BM}  - \overrightarrow {BC}  = \frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} \).

b) Sai. Vì \(G\) là trọng tâm của tam giác \(ACM\) nên

\(3\overrightarrow {BG}  = \overrightarrow {BA}  + \overrightarrow {BM}  + \overrightarrow {BC}  = \overrightarrow {BA}  + \frac{1}{2}\overrightarrow {BA}  + \overrightarrow {BC}  = \frac{3}{2}\overrightarrow {BA}  + \overrightarrow {BC}  \Rightarrow \overrightarrow {BG}  = \frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} .\)

c) Đúng. Vì \(ABCD\) là hình chữ nhật nên \(BA \bot BC\), suy ra \(\overrightarrow {BC}  \cdot \overrightarrow {BA}  = 0\).

d) Sai. Ta có \(\overrightarrow {BG}  \cdot \overrightarrow {CM}  = \left( {\frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA}  \cdot \overrightarrow {BC}  - \frac{1}{3}{\overrightarrow {BC} ^2}\)

\( = \frac{1}{4} \cdot {\left( {4a} \right)^2} - \frac{1}{3} \cdot 0 - \frac{1}{3} \cdot {\left( {3a} \right)^2} = {a^2}.\) (\(BC = AD = 3a\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 2)

Dựng hình bình hành \(ABCM.\) Ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB} \).

Suy ra độ lớn của tổng hợp lực tác dụng lên vật là: \[\left| {\overrightarrow F } \right| = \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {MB} } \right| = MB\].

Xét tam giác \(CMB\) có

\(M{B^2} = M{C^2} + B{C^2} - 2MC \cdot BC \cdot \cos \widehat {MCB} = {50^2} + {30^2} - 2 \cdot 50 \cdot 30 \cdot \cos 120^\circ  = 4900\).

Suy ra \(\left| {\overrightarrow F } \right| = \sqrt {4900}  = 70\) N.

Góc tạo bởi lực \(\vec F\) và phương chuyển động là \(\widehat {BMC}\) với

\(\cos \widehat {BMC} = \frac{{M{B^2} + M{C^2} - B{C^2}}}{{2MB \cdot MC}} = \frac{{{{70}^2} + {{50}^2} - {{30}^2}}}{{2 \cdot 70 \cdot 50}} = \frac{{13}}{{14}}\).

Gọi \(MD\) là quãng đường vật di chuyển, khi đó công sinh bởi lực \(\vec F\) là:

\(A = \overrightarrow F  \cdot \overrightarrow {MD}  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow {MD} } \right| \cdot \cos \widehat {BMC} = 70 \cdot 28 \cdot \frac{{13}}{{14}} = 1820\;\)J.

Đáp án: 1820.

Lời giải

a) Sai. Người thứ nhất kéo một lực là \[40\sqrt 3 \,\,{\rm{(N)}} \Rightarrow \left| {\overrightarrow {{F_1}} } \right| = 40\sqrt 3 \], người thứ hai kéo một lực là \[80\,\,{\rm{(N)}} \Rightarrow \left| {\overrightarrow {{F_2}} } \right| = 80\].

b) Đúng. Lực tổng hợp, hợp với phương ngang (mặt đường) một góc \(30^\circ \) và phương lực \(\overrightarrow {{F_2}} \) song song mặt đường nên \(\left( {\overrightarrow {{F_2}} ,\overrightarrow F } \right) = 30^\circ \).

c) Đúng. Ta có lực tổng hợp của hai người là \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \).

Suy ra độ lớn của \(\overrightarrow F \) là: \(F = \sqrt {{F_1}^2 + {F_2}^2}  = 40\sqrt 7 \,{\rm{(N)}}\).

d) Đúng. Công sinh ra khi kéo vật là

\[A = \overrightarrow F  \cdot \overrightarrow d  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow d } \right| \cdot \cos \left( {\overrightarrow F ,\overrightarrow d } \right) = 40\sqrt 7  \cdot 5 \cdot \cos 30^\circ  = 1000\sqrt {21} \,{\rm{(J)}} = a\sqrt b {\rm{(J)}} \Rightarrow \left\{ \begin{array}{l}a = 1000\\b = 21\end{array} \right.\].

Khi đó \(a + b = 1021\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP