Một sợi dây kim loại dài \(60{\rm{cm}}\) được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Quảng cáo
Trả lời:
Gọi \(x{\rm{ }}\left( {0 < x < 60} \right)\) là chiều dài của đoạn thứ hai, suy ra \(60 - x\) là độ dài đoạn thứ nhất.
Khi đó cạnh hình vuông là \(15 - \frac{x}{4}\) nên diện tích hình vuông là \({\left( {15 - \frac{x}{4}} \right)^2}\).
Chu vi của vòng tròn là \(2\pi R = x \Rightarrow R = \frac{x}{{2\pi }}\). Khi đó diện tích hình tròn là \(\pi {R^2} = \frac{{{x^2}}}{{4\pi }}\).
Khi đó tổng diện tích của hai hình sẽ là \(f\left( x \right) = \frac{{{x^2}}}{{4\pi }} + {\left( {15 - \frac{x}{4}} \right)^2}\).
Khi đó ta có \(f'\left( x \right) = \frac{x}{{2\pi }} - \frac{1}{2}\left( {15 - \frac{x}{4}} \right) = \frac{x}{2}\left( {\frac{1}{\pi } + \frac{1}{4}} \right) - \frac{{15}}{2}\).
Cho \(f'\left( x \right) = 0 \Rightarrow x = \frac{{15}}{{\frac{1}{\pi } + \frac{1}{4}}}\). Suy ra tổng diện tích hai hình nhỏ nhất khi \(x = \frac{{60\pi }}{{4 + \pi }}\).
Khi đó cạnh hình vuông sẽ là \(60 - \frac{{60\pi }}{{4 + \pi }} \approx 33,61\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi đường chéo hình chữ nhật là \(a\). Ta có: \[R + r = \frac{a}{{1 + \sqrt 2 }}\].
Tìm max của \[{R^2} + {r^2}\]. Khảo sát hàm, ta tìm được \[R = \frac{a}{{2\sqrt 2 }}\] Từ đó ta tìm được \(\sqrt k = \sqrt 2 - 1\).
Lời giải

Gọi \(M,\,N\) lần lượt là hình chiếu vuông góc của \(A,\,B\) lên \(CD\)
Đặt \(x = MD\), \(\left( {0 < x < a} \right)\) suy ra \(AM = \sqrt {A{D^2} - M{D^2}} = \sqrt {{a^2} - {x^2}} \)
Diện tích của mảnh vườn hình thang cân là \(S\left( x \right) = \frac{{\left( {AB + CD} \right)AM}}{2} = \left( {a + x} \right)\sqrt {{a^2} - {x^2}} \).
Xét hàm số \(f\left( x \right) = \left( {a + x} \right)\sqrt {{a^2} - {x^2}} \)trên khoảng \(\left( {0 < x < a} \right)\)
Đạo hàm \(f'\left( x \right) = \frac{{ - 2{x^2} - ax + {a^2}}}{{\sqrt {{a^2} - {x^2}} }} = 0 \Leftrightarrow \left[ \begin{array}{l}x = - a \notin \left( {0 < x < a} \right)\\x = \frac{a}{2} \in \left( {0 < x < a} \right)\end{array} \right.\)
Bảng biến thiên hàm số \(f\left( x \right)\) trên khoảng \(\left( {0\,;\,a} \right)\)

Từ bảng biến thiên suy ra \(\mathop {{\rm{max}}}\limits_{\left( {0;\,a} \right)} f\left( x \right) = f\left( {\frac{a}{2}} \right) = \frac{{3\sqrt 3 {a^2}}}{4}\)
Vậy bác nông dân có thể rào được mảnh vườn có diện tích lớn nhất là \(\frac{{3\sqrt 3 {a^2}}}{4}\)\({{\rm{m}}^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.