Câu hỏi:

09/08/2025 549 Lưu

Một xe khách đi từ Việt Trì về Hà Nội chở tối đa được là 60 hành khách một chuyến. Nếu một chuyến chở được m hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận mỗi chuyến xe là lớn nhất.?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Gọi \(x\) là số hành khách trên mỗi chuyến xe để số tiền thu được là lớn nhất \(\left( {0 < x \le 60} \right)\)

Gọi \(F\left( x \right)\) là hàm lợi nhuận thu được (\(F\left( x \right)\): đồng)

Số tiền thu được: \(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2}.x = 90.000x - 1500{x^2} + \frac{{25}}{4}{x^3}\)

Bài toán trở thành tìm giá trị lớn nhất của hàm số:

\(F'\left( x \right) = 90000 - 3000x + \frac{{75}}{4}{x^2};\,F'\left( x \right) = 0 \Leftrightarrow 90000 - 3000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 120(loai)\\x = 40(t/m)\end{array} \right.\)

Bảng biến thiên

Một xe khách đi từ Việt Trì về Hà Nội chở tối đa được là 60 hành khách một chuyến. Nếu một chuyến chở được m hành khách (ảnh 1)

Vậy để thu được số tiền lớn nhất thì trên mỗi chuyến xe khách đó phải chở 40 người.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A

Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)

Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:

\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)

Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.

Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx}  + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)

\(S'\left( x \right) = 0 \Leftrightarrow  - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow  - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\)

Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

Lời giải

Chọn A

Gọi \[x,y,h\] lần lượt là chiều dài, chiều rộng, chiều cao của hồ chứa nước, \(\left( {x > 0,y > 0,h > 0,m} \right)\)

Ta có: \(\frac{y}{x} = 2 \Leftrightarrow y = 2x\). Thể tích hồ chứa nước \(V = xyh \Leftrightarrow h = \frac{V}{{xy}} = \frac{{576}}{{x\left( {2x} \right)}} = \frac{{288}}{{{x^2}}}\)

Diện tích cần xây dựng hồ chứa nước:

\(S\left( x \right) = 2xy + 2xh + 2yh = 2x\left( {2x} \right) + 2x\frac{{288}}{{{x^2}}} + 2\left( {2x} \right)\frac{{288}}{{{x^2}}} = 4{x^2} + \frac{{1728}}{x}\)

Để chi phí nhân công là ít nhất thì diện tích cần xây dựng là nhỏ nhất, mà vẫn đạt thể tích như mong muốn.

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) nhỏ nhất

\( \Leftrightarrow S\left( x \right) = 4{x^2} + \frac{{1728}}{x} \Rightarrow S'\left( x \right) = 0 \Leftrightarrow 8x - \frac{{1728}}{{{x^2}}} = 0 \Leftrightarrow x = 6\)

Bảng biến thiên:

Nhà Long muốn xây một hồ chứa nước có dạng một khối hộp chữ nhật có nắp đậy có thể tích bằng 576m^3 (ảnh 1)

Vậy kích thước của hồ là: rộng 6m, dài 12m, cao 8m.

Diện tích cần xây: \(432{m^2}\) và chi phí ít nhất là: \(432x500.000 = 216.000.000\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP