Một xe khách đi từ Việt Trì về Hà Nội chở tối đa được là 60 hành khách một chuyến. Nếu một chuyến chở được m hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận mỗi chuyến xe là lớn nhất.?
Quảng cáo
Trả lời:

Chọn B
Gọi \(x\) là số hành khách trên mỗi chuyến xe để số tiền thu được là lớn nhất \(\left( {0 < x \le 60} \right)\)
Gọi \(F\left( x \right)\) là hàm lợi nhuận thu được (\(F\left( x \right)\): đồng)
Số tiền thu được: \(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2}.x = 90.000x - 1500{x^2} + \frac{{25}}{4}{x^3}\)
Bài toán trở thành tìm giá trị lớn nhất của hàm số:
\(F'\left( x \right) = 90000 - 3000x + \frac{{75}}{4}{x^2};\,F'\left( x \right) = 0 \Leftrightarrow 90000 - 3000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 120(loai)\\x = 40(t/m)\end{array} \right.\)
Bảng biến thiên

Vậy để thu được số tiền lớn nhất thì trên mỗi chuyến xe khách đó phải chở 40 người.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Rộng \(\frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
B. Rộng \(\frac{{\sqrt {34} - 3\sqrt 2 }}{{15}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
C. Rộng \(\frac{{\sqrt {34} - 3\sqrt 2 }}{{14}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
Lời giải
Chọn A
Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)
Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:
\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)
Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)
Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.
Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)
\(S'\left( x \right) = 0 \Leftrightarrow - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d\)
Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
Câu 2
A. Tốc độ bơm giảm từ phút 60 đến phút thứ 90.
B. Tốc độ bơm luôn giảm.
C. Tốc độ bơm tăng từ phút 0 đến phút thứ 75.
Lời giải
Chọn A
Xét hàm \(V' = \frac{9}{{10}}{t^2} - \frac{1}{{100}}{t^3}{\rm{ }}\left( {0 \le t \le 90} \right)\); \(V'' = \frac{9}{5}t - \frac{3}{{100}}{t^2} \Rightarrow V'' = 0{\rm{ khi }}t = 0,t = 60\)
Dựa vào bảng biến thiên ta có hàm số \(V'\) đồng biến trên \(\left( {0\, & ;60} \right)\) và nghịch biến trên \(\left( {60;\,90} \right)\)
Câu 3
A. Rộng 6m, dài 12m, cao 8m. Tiền: 216 triệu
B. Rộng 6m, dài 12m, cao 8m. Tiền: 215 triệu
C. Rộng 6m, dài 12m, cao 8m. Tiền: 214 triệu
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.