Câu hỏi:

09/08/2025 90 Lưu

Một khách sạn có 50 phòng. Hiện tại mỗi phòng cho thuê với giá 400 ngàn đồng một ngày thì toàn bộ phòng được thuê hết. Biết rằng cứ mỗi lần tăng giá thêm 20 ngàn đồng thì có thêm 2 phòng trống. Giám đốc phải chọn giá phòng mới là bao nhiêu để thu nhập của khách sạn trong ngày là lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Gọi \(x\)(ngàn đồng) là giá phòng khách sạn cần đặt ra, \(x > 400\) (đơn vị: ngàn đồng).

Giá chênh lệch sau khi tăng \(x - 400\).

Số phòng cho thuê giảm nếu giá là \(x\): \(\frac{{\left( {x - 400} \right) + 2}}{{20}} = \frac{{x - 400}}{{10}}\).

Số phòng cho thuê với giá \(x\) là \(50 - \frac{{x - 400}}{{10}} = 90 - \frac{x}{{10}}\).

Tổng doanh thu trong ngày là: \(f\left( x \right) = x\left( {90 - \frac{x}{{10}}} \right) =  - \frac{{{x^2}}}{{10}} + 90x\).

\(f'\left( x \right) =  - \frac{x}{5} + 90 = 0 \Leftrightarrow x = 450\).

Bảng biến thiên:

Một khách sạn có 50 phòng. Hiện tại mỗi phòng cho thuê với giá 400 ngàn đồng một ngày thì toàn bộ phòng được thuê hết (ảnh 1)

Dựa vào bảng biến thiên ta thấy \(f\left( x \right)\) đạt giá trị lớn nhất khi \(x = 450\).

Vậy nếu cho thuê với giá 450 ngàn đồng thì sẽ có doanh thu cao nhất trong ngày là 2.025.000 đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A

Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)

Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:

\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)

Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.

Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx}  + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)

\(S'\left( x \right) = 0 \Leftrightarrow  - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow  - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\)

Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

Lời giải

Chọn A

Gọi \[x,y,h\] lần lượt là chiều dài, chiều rộng, chiều cao của hồ chứa nước, \(\left( {x > 0,y > 0,h > 0,m} \right)\)

Ta có: \(\frac{y}{x} = 2 \Leftrightarrow y = 2x\). Thể tích hồ chứa nước \(V = xyh \Leftrightarrow h = \frac{V}{{xy}} = \frac{{576}}{{x\left( {2x} \right)}} = \frac{{288}}{{{x^2}}}\)

Diện tích cần xây dựng hồ chứa nước:

\(S\left( x \right) = 2xy + 2xh + 2yh = 2x\left( {2x} \right) + 2x\frac{{288}}{{{x^2}}} + 2\left( {2x} \right)\frac{{288}}{{{x^2}}} = 4{x^2} + \frac{{1728}}{x}\)

Để chi phí nhân công là ít nhất thì diện tích cần xây dựng là nhỏ nhất, mà vẫn đạt thể tích như mong muốn.

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) nhỏ nhất

\( \Leftrightarrow S\left( x \right) = 4{x^2} + \frac{{1728}}{x} \Rightarrow S'\left( x \right) = 0 \Leftrightarrow 8x - \frac{{1728}}{{{x^2}}} = 0 \Leftrightarrow x = 6\)

Bảng biến thiên:

Nhà Long muốn xây một hồ chứa nước có dạng một khối hộp chữ nhật có nắp đậy có thể tích bằng 576m^3 (ảnh 1)

Vậy kích thước của hồ là: rộng 6m, dài 12m, cao 8m.

Diện tích cần xây: \(432{m^2}\) và chi phí ít nhất là: \(432x500.000 = 216.000.000\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP