Công ty dụ lịch Ban Mê dự định tổ chức một tua xuyên Việt. Công ty dự định nếu giá tua là 2 triệu đồng thì sẽ có khoảng 150 người tham gia. Để kích thích mọi người tham gia, công ty quyết định giảm giá và cứ mỗi lần giảm giá tua 100 ngàn đồng thì sẽ có thêm 20 người tham gia. Hỏi công ty phải bán giá tua là bao nhiêu để doanh thu từ tua xuyên Việt là lớn nhất.
Quảng cáo
Trả lời:
Chọn B
Gọi \(x\)(triệu đồng) là giá tua.
Giá đã giảm so với ban đầu là \(2 - x\).
Số người tham gia tăng thêm nếu giá bán \(x\) là: \(\frac{{\left( {2 - x} \right)20}}{{0,1}} = 400 - 200x\).
Số người sẽ tham gia nếu bán giá \(x\) là: \(150 + \left( {400 - 200x} \right) = 550 - 220x\).
Tổng doanh thu là: \(f\left( x \right) = x\left( {550 - 200x} \right) = - 200{x^2} + 550x\);
\(f'\left( x \right) = - 400x + 550 = 0 \Leftrightarrow x = \frac{{11}}{8}\)
Bảng biến thiên

Dựa vào bảng biến thiên ta thấy \(f\left( x \right)\) đạt giá trị lớn nhất khi \(x = \frac{{11}}{8} = 1,375\).
Vậy công ty cần đặt giá tua 1375000 đồng thì tổng doanh thu sẽ cao nhất là 378125000 đồng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Rộng \(\frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
B. Rộng \(\frac{{\sqrt {34} - 3\sqrt 2 }}{{15}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
C. Rộng \(\frac{{\sqrt {34} - 3\sqrt 2 }}{{14}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
Lời giải
Chọn A
Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)
Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:
\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)
Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)
Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.
Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)
\(S'\left( x \right) = 0 \Leftrightarrow - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d\)
Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
Câu 2
A. Tốc độ bơm giảm từ phút 60 đến phút thứ 90.
B. Tốc độ bơm luôn giảm.
C. Tốc độ bơm tăng từ phút 0 đến phút thứ 75.
Lời giải
Chọn A
Xét hàm \(V' = \frac{9}{{10}}{t^2} - \frac{1}{{100}}{t^3}{\rm{ }}\left( {0 \le t \le 90} \right)\); \(V'' = \frac{9}{5}t - \frac{3}{{100}}{t^2} \Rightarrow V'' = 0{\rm{ khi }}t = 0,t = 60\)
Dựa vào bảng biến thiên ta có hàm số \(V'\) đồng biến trên \(\left( {0\, & ;60} \right)\) và nghịch biến trên \(\left( {60;\,90} \right)\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Rộng 6m, dài 12m, cao 8m. Tiền: 216 triệu
B. Rộng 6m, dài 12m, cao 8m. Tiền: 215 triệu
C. Rộng 6m, dài 12m, cao 8m. Tiền: 214 triệu
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


