Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất?Biết dòng sông là thẳng,mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Quảng cáo
Trả lời:
Chọn D

Gọi \(A\) là mục tiêu; \(B\) là vị trí chiến sỹ và \(BD\) là đường bơi của chiến sỹ.
Chọn một đơn vị độ dài là 100m suy ra \[BC = 1;AB = 10;\]\[AC = 3\sqrt {11} \]
Gọi vận tốc bơi của chiến sỹ là một đơn vị vận tốc thì vận tốc chạy của chiến sỹ là 3 đơn vị vận tốc. Gọi \(x\) là quãng đường chiến sỹ bơi suy ra \(BD = x\)
Vậy quãng đường chiến sỹ chạy là \[AD = AC - CD = 3\sqrt {11} - \sqrt {{x^2} - 1} \]
Thời gian chiến sỹ đến được mục tiêu là: \[t = \frac{{3\sqrt {11} - \sqrt {{x^2} - 1} }}{3} + \frac{x}{1} = \sqrt {11} - \frac{1}{3}\sqrt {{x^2} - 1} + x\]
Xét hàm \[f\left( x \right) = \sqrt {11} - \frac{1}{3}\sqrt {{x^2} - 1} + x\] có \[f'\left( x \right) = 1 - \frac{1}{3}\frac{x}{{\sqrt {{x^2} - 1} }} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\sqrt 2 }}{4}\left( {thoa\,\,man} \right)\\x = - \frac{{3\sqrt 2 }}{4}\left( {loai} \right)\end{array} \right.\]
Bảng biến thiên:

Vậy thời gian chiến sỹ đến mục tiêu ngắn nhất khi \[f{\left( x \right)_{\min }} \Rightarrow x = \frac{{3\sqrt 2 }}{4}\]
Vậy chiến sỹ phải bơi \[\frac{{3\sqrt 2 }}{4}.100 = 75\sqrt 2 \left( m \right)\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)
Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:
\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)
Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)
Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.
Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)
\(S'\left( x \right) = 0 \Leftrightarrow - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d\)
Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
Lời giải
Chọn B
Gọi chiều rộng của bể là \(3x{\rm{ }}\left( m \right)\). Ta có chiều dài bể là \(4x{\rm{ }}(m)\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}{\rm{ }}\left( m \right)\)
Khi đó tổng diện tích bề mặt xây là:
\(T = \left( {3x + 4x} \right).2.\frac{2}{{3{x^2}}} + 2.3x.4x - \frac{2}{9}.3x.4x = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2.\sqrt {\frac{{28}}{{3{x^2}}}.\frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}{\rm{ }}\left( {{m^2}} \right)\).
Chi phí \(C\) (tính theo đồng) xây dựng là: \(C = T.980000 \ge \frac{{32\sqrt 7 }}{3}.980000 \approx 27657000\) (đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.