Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất?Biết dòng sông là thẳng,mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Quảng cáo
Trả lời:

Chọn D

Gọi \(A\) là mục tiêu; \(B\) là vị trí chiến sỹ và \(BD\) là đường bơi của chiến sỹ.
Chọn một đơn vị độ dài là 100m suy ra \[BC = 1;AB = 10;\]\[AC = 3\sqrt {11} \]
Gọi vận tốc bơi của chiến sỹ là một đơn vị vận tốc thì vận tốc chạy của chiến sỹ là 3 đơn vị vận tốc. Gọi \(x\) là quãng đường chiến sỹ bơi suy ra \(BD = x\)
Vậy quãng đường chiến sỹ chạy là \[AD = AC - CD = 3\sqrt {11} - \sqrt {{x^2} - 1} \]
Thời gian chiến sỹ đến được mục tiêu là: \[t = \frac{{3\sqrt {11} - \sqrt {{x^2} - 1} }}{3} + \frac{x}{1} = \sqrt {11} - \frac{1}{3}\sqrt {{x^2} - 1} + x\]
Xét hàm \[f\left( x \right) = \sqrt {11} - \frac{1}{3}\sqrt {{x^2} - 1} + x\] có \[f'\left( x \right) = 1 - \frac{1}{3}\frac{x}{{\sqrt {{x^2} - 1} }} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\sqrt 2 }}{4}\left( {thoa\,\,man} \right)\\x = - \frac{{3\sqrt 2 }}{4}\left( {loai} \right)\end{array} \right.\]
Bảng biến thiên:

Vậy thời gian chiến sỹ đến mục tiêu ngắn nhất khi \[f{\left( x \right)_{\min }} \Rightarrow x = \frac{{3\sqrt 2 }}{4}\]
Vậy chiến sỹ phải bơi \[\frac{{3\sqrt 2 }}{4}.100 = 75\sqrt 2 \left( m \right)\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)
Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:
\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)
Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)
Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.
Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)
\(S'\left( x \right) = 0 \Leftrightarrow - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d\)
Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34} - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)
Lời giải
Chọn A
Gọi \[x,y,h\] lần lượt là chiều dài, chiều rộng, chiều cao của hồ chứa nước, \(\left( {x > 0,y > 0,h > 0,m} \right)\)
Ta có: \(\frac{y}{x} = 2 \Leftrightarrow y = 2x\). Thể tích hồ chứa nước \(V = xyh \Leftrightarrow h = \frac{V}{{xy}} = \frac{{576}}{{x\left( {2x} \right)}} = \frac{{288}}{{{x^2}}}\)
Diện tích cần xây dựng hồ chứa nước:
\(S\left( x \right) = 2xy + 2xh + 2yh = 2x\left( {2x} \right) + 2x\frac{{288}}{{{x^2}}} + 2\left( {2x} \right)\frac{{288}}{{{x^2}}} = 4{x^2} + \frac{{1728}}{x}\)
Để chi phí nhân công là ít nhất thì diện tích cần xây dựng là nhỏ nhất, mà vẫn đạt thể tích như mong muốn.
Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) nhỏ nhất
\( \Leftrightarrow S\left( x \right) = 4{x^2} + \frac{{1728}}{x} \Rightarrow S'\left( x \right) = 0 \Leftrightarrow 8x - \frac{{1728}}{{{x^2}}} = 0 \Leftrightarrow x = 6\)
Bảng biến thiên:

Vậy kích thước của hồ là: rộng 6m, dài 12m, cao 8m.
Diện tích cần xây: \(432{m^2}\) và chi phí ít nhất là: \(432x500.000 = 216.000.000\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.