Câu hỏi:

09/08/2025 7 Lưu

Tìm diện tích lớn nhất của hình chữ nhật nội tiếp trong nửa đường tròn bán kính \(R\), nếu một cạnh của hình chữ nhật nằm dọc theo đường kính của hình tròn mà hình chữ nhật đó nội tiếp?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Gọi \(x\) là độ dài cạnh của hình chữ nhật không nằm dọc theo đường kính của hình tròn \(\left( {0 < x < R} \right)\)

Độ dài cạnh còn lại của hình chữ nhật là \(2\sqrt {{R^2} - {x^2}} \)

Ta có diện tích của hình chữ nhật là: \(S\left( x \right) = 2x\sqrt {{R^2} - {x^2}} \)

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.

\(S'\left( x \right) = 2\sqrt {{R^2} - {x^2}}  - \frac{{2{x^2}}}{{\sqrt {{R^2} - {x^2}} }} = \frac{{2{R^2} - 4{x^2}}}{{\sqrt {{R^2} - {x^2}} }} = 0 \Leftrightarrow 2{R^2} - 4{x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{R\sqrt 2 }}{2}\,\,\left( {thoa\,\,man} \right)\\x = \frac{{ - R\sqrt 2 }}{2}\,\,\left( {loai} \right)\end{array} \right.\)

Bảng biến thiên:

Tìm diện tích lớn nhất của hình chữ nhật nội tiếp trong nửa đường tròn bán kính R, nếu một cạnh của hình chữ nhật  (ảnh 1)

Vậy diện tích lớn nhất của hình chữ nhật là \({R^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A

Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)

Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:

\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)

Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.

Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx}  + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)

\(S'\left( x \right) = 0 \Leftrightarrow  - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow  - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\)

Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

Lời giải

Chọn B

Gọi chiều rộng của bể là \(3x{\rm{ }}\left( m \right)\). Ta có chiều dài bể là \(4x{\rm{ }}(m)\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}{\rm{ }}\left( m \right)\)

Khi đó tổng diện tích bề mặt xây là:

\(T = \left( {3x + 4x} \right).2.\frac{2}{{3{x^2}}} + 2.3x.4x - \frac{2}{9}.3x.4x = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2.\sqrt {\frac{{28}}{{3{x^2}}}.\frac{{64{x^2}}}{3}}  = \frac{{32\sqrt 7 }}{3}{\rm{ }}\left( {{m^2}} \right)\).

Chi phí \(C\) (tính theo đồng) xây dựng là: \(C = T.980000 \ge \frac{{32\sqrt 7 }}{3}.980000 \approx 27657000\) (đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP