Câu hỏi:

09/08/2025 457 Lưu

Để thiết kế một chiếc bể cá hình chữ nhật có chiều cao là \(60cm,\) thể tích là \(96.000c{m^3}\), người thợ dùng loại kính để sử dụng làm mặt bên có giá thành 70.000 đồng/m2 và loại kính để làm mặt đáy có giá thành là 100.000 đồng/m2. Chi phí thấp nhất để hoàn thành bể cá là:

A. \(83.200.000\) đồng    
B. 382.000 đồng           
C. 83.200 đồng             
D. 8.320.000 đồng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Diện tích của đáy hộp là: \(S = \frac{V}{h} = \frac{{96.000}}{{60}} = 1600c{m^2} = 0,16{m^2}\)

Gọi chiều dài cạnh đáy của hộp là \(x,\left( {x > 0,m} \right)\), chiều rộng của hộp là \(\frac{{0,16}}{x}\)

Gọi \(F\left( x \right)\) là hàm chi phí để làm để cá.

Chi phí để hoàn thành bể cá:

\[F\left( x \right) = 0,16 \times 100.000 + 2.0,6x.70.000 + 2.0,6.\frac{{0,16}}{x}.70.000 = 16.000 + 48.000x + \frac{{13440}}{x}\]

Bài toán trở thành tìm \(x\) để \(F\left( x \right)\) đạt giá trị nhỏ nhất.

\(F'\left( x \right) = 84.000 - \frac{{13440}}{{{x^2}}} = 0 \Leftrightarrow 84.000 - \frac{{13440}}{{{x^2}}} = 0 \Leftrightarrow x = 0,4\)

Bảng biến thiên:

Để thiết kế một chiếc bể cá hình chữ nhật có chiều cao là 60cm thể tích là 96000cm^3, người thợ dùng loại kính để sử dụng làm mặt bên có giá thành 70.000 đồng/m^2 (ảnh 1)

Vậy chi phí thấp nhất để hoàn thành bể cá là: 83.200 đồng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Xét hàm \(V' = \frac{9}{{10}}{t^2} - \frac{1}{{100}}{t^3}{\rm{  }}\left( {0 \le t \le 90} \right)\); \(V'' = \frac{9}{5}t - \frac{3}{{100}}{t^2} \Rightarrow V'' = 0{\rm{ khi  }}t = 0,t = 60\)

Dựa vào bảng biến thiên ta có hàm số \(V'\) đồng biến trên \(\left( {0\, & ;60} \right)\) và nghịch biến trên \(\left( {60;\,90} \right)\)

Câu 2

A. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

B. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{15}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

C. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{14}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

D. Rộng \(\frac{{\sqrt {34}  - 3\sqrt 2 }}{{13}}d\), dài \(\frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

Lời giải

Chọn A

Gọi chiều dài và chiều rộng của miếng phụ lần lượt là x, y. Đường kính của khúc gỗ là d, khi đó tiết diện ngang của thanh xà có độ dài cạnh là \(\frac{d}{{\sqrt 2 }}\) và \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4},0 < y < \frac{d}{{\sqrt 2 }}\)

Theo đề Câu ta được hình chữ nhật ABCD như hình vẽ, theo định lý Pitago ta có:

\({\left( {2x + \frac{d}{{\sqrt 2 }}} \right)^2} + {y^2} = {d^2} \Leftrightarrow y = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 x} \)

Do đó, miếng phụ có diện tích là: \(S\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} \) với \(0 < x < \frac{{d\left( {2 - \sqrt 2 } \right)}}{4}\)

Bài toán trở thành tìm \(x\) để \(S\left( x \right)\) đạt giá trị lớn nhất.

Ta có: \(S'\left( x \right) = \frac{1}{{\sqrt 2 }}\sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx}  + \frac{{x\left( { - 8x - 2\sqrt 2 d} \right)}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)\( = \frac{{ - 16{x^2} - 6\sqrt 2 dx + {d^2}}}{{\sqrt 2 \sqrt {{d^2} - 8{x^2} - 4\sqrt 2 dx} }}\)

\(S'\left( x \right) = 0 \Leftrightarrow  - 16{x^2} - 6\sqrt 2 dx + {d^2} = 0 \Leftrightarrow  - 16{\left( {\frac{x}{d}} \right)^2} - 6\sqrt 2 \left( {\frac{x}{d}} \right) + 1 = 0 \Leftrightarrow x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d\)

Vậy miếng phụ có kích thước \(x = \frac{{\sqrt {34}  - 3\sqrt 2 }}{{16}}d,y = \frac{{\sqrt {7 - \sqrt {17} } }}{4}d\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{900}}{{6 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].             
B. \[\frac{{1200}}{{6 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].             
C. \[\frac{{700}}{{3 + \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].                                    
D. \[\frac{{600}}{{3 - \sqrt 3 }}\left( {{{\rm{m}}^2}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP