Cho hàm số \(y = \frac{{2x}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Mệnh đề nào sau đây đúng?
Quảng cáo
Trả lời:

Chọn D
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x}}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{1 + \frac{1}{x}}} = 2 \Rightarrow y = 2\) là tiệm cận ngang của đồ thị hàm số đã cho.
Và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{2x}}{{x + 1}} = + \infty \Rightarrow x = - 1\) là tiệm cận đứng của đồ thị hàm số đã cho.
Vậy đồ thị hàm số đã cho có một tiệm cận ngang và một tiệm cận đứng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[y' = 3a{x^2} + 2bx + c\], vì \[a \ne 0\], \[{b^2} - 3ac > 0\] nên \[y' = 0\] có hai nghiệm phân biệt \[{x_1},\,\,{x_2}\] (giả sử \[{x_1} < \,{x_2}\]). Khi đó, với cả hai trường hợp \[a > 0\] và \[a < 0\] hàm số đã cho đều có hai điểm cực trị.
Đáp án: 2.
Câu 2
Lời giải
Chọn C
Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).
Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).
Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.
Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.