Cho hàm số \(y = f\left( x \right) = {x^3} - 3x\).
a) Tập xác định của hàm số là \(\mathbb{R}\).
b) \(f'\left( x \right) = 3{x^2} + 3\).
c) \(f'\left( x \right) < 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\), \(f'\left( x \right) > 0\) khi \(x \in \left( { - 1;1} \right)\).
d) Hàm số đã cho có đồ thị như hình dưới đây.

Cho hàm số \(y = f\left( x \right) = {x^3} - 3x\).
a) Tập xác định của hàm số là \(\mathbb{R}\).
b) \(f'\left( x \right) = 3{x^2} + 3\).
c) \(f'\left( x \right) < 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\), \(f'\left( x \right) > 0\) khi \(x \in \left( { - 1;1} \right)\).
d) Hàm số đã cho có đồ thị như hình dưới đây.
Quảng cáo
Trả lời:

a) Đúng. Tập xác định: \(\mathbb{R}\).
b) Sai. \(y' = 3{x^2} - 3\) và \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\end{array} \right.\).
c) Sai. Bảng biến thiên của hàm số:
Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
Hàm số đạt cực đại tại \(x = - 1,{y_{{\rm{CD}}}} = 2\); hàm số đạt cực tiểu tại \(x = 1,{y_{{\rm{CT}}}} = - 2\).
d) Đúng.
- Giao điểm của đồ thị với trục tung: \(\left( {0;0} \right)\).
- Giao điểm của đồ thị với trục hoành tại \(x = 0\) hoặc \(x = \pm \sqrt 3 \). Vậy đồ thị hàm số giao với trục hoành tại ba điểm \(\left( {0;0} \right),\left( { - \sqrt 3 ;0} \right)\) và \(\left( {\sqrt 3 ;0} \right)\).
Vậy đồ thị hàm số \(y = f\left( x \right) = {x^3} - 3x\) được cho ở hình vẽ trên.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[y' = 3a{x^2} + 2bx + c\], vì \[a \ne 0\], \[{b^2} - 3ac > 0\] nên \[y' = 0\] có hai nghiệm phân biệt \[{x_1},\,\,{x_2}\] (giả sử \[{x_1} < \,{x_2}\]). Khi đó, với cả hai trường hợp \[a > 0\] và \[a < 0\] hàm số đã cho đều có hai điểm cực trị.
Đáp án: 2.
Câu 2
Lời giải
Chọn C
Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).
Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).
Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.
Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.