Cho hàm số \(y = f\left( x \right) = {x^3} - 3x\).
a) Tập xác định của hàm số là \(\mathbb{R}\).
b) \(f'\left( x \right) = 3{x^2} + 3\).
c) \(f'\left( x \right) < 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\), \(f'\left( x \right) > 0\) khi \(x \in \left( { - 1;1} \right)\).
d) Hàm số đã cho có đồ thị như hình dưới đây.

Cho hàm số \(y = f\left( x \right) = {x^3} - 3x\).
a) Tập xác định của hàm số là \(\mathbb{R}\).
b) \(f'\left( x \right) = 3{x^2} + 3\).
c) \(f'\left( x \right) < 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\), \(f'\left( x \right) > 0\) khi \(x \in \left( { - 1;1} \right)\).
d) Hàm số đã cho có đồ thị như hình dưới đây.

Quảng cáo
Trả lời:
a) Đúng. Tập xác định: \(\mathbb{R}\).
b) Sai. \(y' = 3{x^2} - 3\) và \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\end{array} \right.\).
c) Sai. Bảng biến thiên của hàm số:

Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
Hàm số đạt cực đại tại \(x = - 1,{y_{{\rm{CD}}}} = 2\); hàm số đạt cực tiểu tại \(x = 1,{y_{{\rm{CT}}}} = - 2\).
d) Đúng.
- Giao điểm của đồ thị với trục tung: \(\left( {0;0} \right)\).
- Giao điểm của đồ thị với trục hoành tại \(x = 0\) hoặc \(x = \pm \sqrt 3 \). Vậy đồ thị hàm số giao với trục hoành tại ba điểm \(\left( {0;0} \right),\left( { - \sqrt 3 ;0} \right)\) và \(\left( {\sqrt 3 ;0} \right)\).
Vậy đồ thị hàm số \(y = f\left( x \right) = {x^3} - 3x\) được cho ở hình vẽ trên.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị của hàm số \(y = f'\left( x \right)\) ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Khi đó dựa vào bảng biến thiên ta thấy:
a) Sai. Hàm số có ba điểm cực trị.
b) Sai. Hàm số đồng biến trên các khoảng \(\left( { - 1;1} \right)\) và \(\left( {4; + \infty } \right)\).
c) Đúng. Hàm số nghịch biến trên khoảng \(\left( {1;4} \right)\)nên \(f\left( 1 \right) > f\left( 2 \right) > f\left( 4 \right)\).
d) Đúng. Trên đoạn \(\left[ { - 1;4} \right]\), giá trị lớn nhất của hàm số \(y = f\left( x \right)\) là \(f\left( 1 \right)\).
Câu 2
Lời giải
Chọn C
Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).
Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).
Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.

Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


