Câu hỏi:

27/09/2025 21 Lưu

Nhà máy\(A\) chuyên sản xuất một loại sản phẩm cho nhà máy\(B\). Hai nhà máy thỏa thuận rằng, hằng tháng \(A\) cung cấp cho \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(x\) tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm được biểu diễn bởi công thức: \(P\left( x \right) = 45 - 0,001{x^2}\) (triệu đồng). Chi phí để \(A\) sản xuất \(x\) tấn sản phẩm trong một tháng là \(C\left( x \right) = 100 + 30x\) triệu đồng (gồm \(100\)triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm).

a) Chi phí để \(A\) sản xuất \(10\) tấn sản phẩm trong một tháng là \(400\)triệu đồng.                                                         

b) Số tiền \(A\) thu được khi bán \(10\) tấn sản phẩm cho \(B\) là \(600\)triệu đồng.                  

c) Lợi nhuận mà \(A\) thu được khi bán \(x\) tấn sản phẩm \(\left( {0 \le x \le 100} \right)\) cho \(B\) được biểu diễn bởi công thức \(H\left( x \right) =  - 0,001{x^3} + 15x - 100\).

d) Bên \(A\) bán cho \(B\) khoảng \(70,7\) tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)  Đúng. Chi phí để \(A\) sản xuất \(10\) tấn sản phẩm trong một tháng là \(C\left( {10} \right) = 100 + 30.10 = 400\)triệu đồng.

b) Sai. Số tiền \(A\) thu được khi bán \(10\) tấn sản phẩm cho \(B\) là

\(R\left( {10} \right) = 10.P\left( {10} \right) = 10.\left( {45 - 0,{{001.10}^2}} \right) = 449\) triệu đồng.

c) Đúng. Lợi nhuận mà \(A\) thu được là: \(H\left( x \right) = R\left( x \right) - C\left( x \right) = xP\left( x \right) - C\left( x \right)\)

\(P\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right) =  - 0,001{x^3} + 15x - 100\)

d) Đúng. Xét hàm số \(H\left( x \right) =  - 0,001{x^3} + 15x - 100\), \(\left( {0 \le x \le 100} \right)\)

Ta có: \(H'\left( x \right) =  - 0,003{x^2} + 15 = 0 \Leftrightarrow  - 0,003{x^2} + 15 = 0 \Leftrightarrow x = 50\sqrt 2 \) (chọn).

Khi đó: \(H\left( 0 \right) =  - 100\); \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2  - 100\]; \(H\left( {100} \right) = 400\).

Vậy \(A\) bán cho \(B\) khoảng \(50\sqrt 2  \approx 70,7\) tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2  - 100\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[y' = 3a{x^2} + 2bx + c\], vì \[a \ne 0\], \[{b^2} - 3ac > 0\] nên \[y' = 0\] có hai nghiệm phân biệt \[{x_1},\,\,{x_2}\] (giả sử \[{x_1} < \,{x_2}\]). Khi đó, với cả hai trường hợp \[a > 0\] và \[a < 0\] hàm số đã cho đều có hai điểm cực trị.

Đáp án: 2.

Câu 2

A. \(1\).                      
B. \(0\).                    
C. \(2\).                           
D. \(3\).

Lời giải

Chọn C

Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).

Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).

Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình dưới.   Số nghiệm thực của phương trình \(f\left( x \right) = 2\) là A. \(1\).	B. \(0\).	C. \(2\).	D. \(3\). (ảnh 2)

Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.

Câu 3

A. \(x = 2\).               
B. \(x = 0\).              
C. \(y = 1\).                             
D. \(x = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP