Câu hỏi:

27/09/2025 19 Lưu

Cho hai vị trí \(A,B\) cách nhau \(615{\rm{\;m}}\), cùng nằm về một phía bờ sông như hình vẽ.

Đoạn đường ngắn nhất là số nguyên dương mà người đó có thể đi là bao nhiêu? (ảnh 1)

Khoảng cách từ \(A\) và từ \(B\) đến bờ sông lần lượt là \(118{\rm{\;m}}\) và \(487{\rm{\;m}}\). Một người đi từ \(A\) đến bờ sông để lấy nước mang về \(B\). Đoạn đường ngắn nhất là số nguyên dương mà người đó có thể đi là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử người đó đi từ \(A\) đến \(M\) để lấy nước và đi từ \(M\) về \(B\)

Dễ dàng tính được \(BD = 369,EF = 492\).

Đoạn đường ngắn nhất là số nguyên dương mà người đó có thể đi là bao nhiêu? (ảnh 2)

Ta đặt \(EM = x\), khi đó ta được: \(MF = 492 - x;\,AM = \sqrt {{x^2} + {{118}^2}} \,;\,BM = \sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} {\rm{.}}\)

Như vậy ta có hàm số \(f\left( x \right)\) được xác định bằng tổng quãng đường \(AM\) và \(MB\):

Xét hàm \(f\left( x \right) = \sqrt {{x^2} + {{118}^2}}  + \sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} {\rm{\;}}\) với\(x \in \left[ {0;492} \right]\)

Ta cần tìm giá trị nhỏ nhất của \(f\left( x \right)\) để có được quãng đường ngắn nhất và từ đó xác định được vị trí điểm \(M\).

Đạo hàm: \[f'\left( x \right) = \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} }}{\rm{ = 0}}\]

\( \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} = \frac{{492 - x}}{{\sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} }} \Leftrightarrow x\sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}}  = \left( {492 - x} \right)\sqrt {{x^2} + {{118}^2}} \)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2}\left[ {{{\left( {492 - x} \right)}^2} + {{487}^2}} \right] = {{\left( {492 - x} \right)}^2}\left( {{x^2} + {{118}^2}} \right)}\\{0 \le x \le 492}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\left( {487x} \right)}^2} = {{\left( {58056 - 118x} \right)}^2}}\\{0 \le x \le 492}\end{array}} \right.} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{{58056}}{{605}}{\rm{\;hay\;}}x =  - \frac{{58056}}{{369}} \Leftrightarrow x = \frac{{58056}}{{605}}}\\{0 \le x \le 492}\end{array}} \right.\)

Hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0;492} \right]\).

So sánh các giá trị của \(f\left( 0 \right)\,;\,f\left( {\frac{{58056}}{{605}}} \right)\,;\,f\left( {492} \right)\) ta có giá trị nhỏ nhất \(f\left( {\frac{{58056}}{{605}}} \right) \approx 779,8{\rm{\;m}}\)

Khi đó quãng đường đi ngắn nhất là xấp xỉ \(779,8{\rm{\;}} \approx {\rm{780m}}\).

Đáp án: 780.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[y' = 3a{x^2} + 2bx + c\], vì \[a \ne 0\], \[{b^2} - 3ac > 0\] nên \[y' = 0\] có hai nghiệm phân biệt \[{x_1},\,\,{x_2}\] (giả sử \[{x_1} < \,{x_2}\]). Khi đó, với cả hai trường hợp \[a > 0\] và \[a < 0\] hàm số đã cho đều có hai điểm cực trị.

Đáp án: 2.

Câu 2

A. \(1\).                      
B. \(0\).                    
C. \(2\).                           
D. \(3\).

Lời giải

Chọn C

Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).

Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).

Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình dưới.   Số nghiệm thực của phương trình \(f\left( x \right) = 2\) là A. \(1\).	B. \(0\).	C. \(2\).	D. \(3\). (ảnh 2)

Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.

Câu 3

A. \(x = 2\).               
B. \(x = 0\).              
C. \(y = 1\).                             
D. \(x = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP