Câu hỏi:

27/09/2025 68 Lưu

Một bác nông dân có ba tấm lưới B40, mỗi tấm dài \(a\)(m) và muốn rào một mảnh vườn dọc theo bờ sông có dạng hình thang cân \(ABCD\) như hình vẽ dưới đây biết rằng bờ sông là đường thẳng \(CD\) không phải rào lưới. Hỏi bác nông dân đó có thể rào được mảnh vườn có diện tích lớn nhất là bao nhiêu mét vuông?

Hỏi bác nông dân đó có thể rào được mảnh vườn có diện tích lớn nhất là bao nhiêu mét vuông? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hỏi bác nông dân đó có thể rào được mảnh vườn có diện tích lớn nhất là bao nhiêu mét vuông? (ảnh 2)

Gọi \(M,\,N\) lần lượt là hình chiếu vuông góc của \(A,\,B\) lên \(CD\)

Đặt \(x = MD\), \(\left( {0 < x < a} \right)\) suy ra \(AM = \sqrt {A{D^2} - M{D^2}}  = \sqrt {{a^2} - {x^2}} \)

Diện tích của mảnh vườn hình thang cân là \(S\left( x \right) = \frac{{\left( {AB + CD} \right)AM}}{2} = \left( {a + x} \right)\sqrt {{a^2} - {x^2}} \).

Xét hàm số \(f\left( x \right) = \left( {a + x} \right)\sqrt {{a^2} - {x^2}} \)trên khoảng \(\left( {0 < x < a} \right)\)

Đạo hàm \(f'\left( x \right) = \frac{{ - 2{x^2} - ax + {a^2}}}{{\sqrt {{a^2} - {x^2}} }} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - a \notin \left( {0 < x < a} \right)\\x = \frac{a}{2} \in \left( {0 < x < a} \right)\end{array} \right.\)

Bảng biến thiên hàm số \(f\left( x \right)\) trên khoảng \(\left( {0\,;\,a} \right)\)

Hỏi bác nông dân đó có thể rào được mảnh vườn có diện tích lớn nhất là bao nhiêu mét vuông? (ảnh 3)

Từ bảng biến thiên suy ra \(\mathop {{\rm{max}}}\limits_{\left( {0;\,a} \right)} f\left( x \right) = f\left( {\frac{a}{2}} \right) = \frac{{3\sqrt 3 {a^2}}}{4}\)

Vậy bác nông dân có thể rào được mảnh vườn có diện tích lớn nhất là \(\frac{{3\sqrt 3 {a^2}}}{4}\)\({{\rm{m}}^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị của hàm số \(y = f'\left( x \right)\) ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới đây: (ảnh 2)

Khi đó dựa vào bảng biến thiên ta thấy:

a) Sai. Hàm số có ba điểm cực trị.

b) Sai. Hàm số đồng biến trên các khoảng \(\left( { - 1;1} \right)\) và \(\left( {4; + \infty } \right)\).

c) Đúng. Hàm số nghịch biến trên khoảng \(\left( {1;4} \right)\)nên \(f\left( 1 \right) > f\left( 2 \right) > f\left( 4 \right)\).

d) Đúng. Trên đoạn \(\left[ { - 1;4} \right]\), giá trị lớn nhất của hàm số \(y = f\left( x \right)\) là \(f\left( 1 \right)\).

Câu 2

A. \(1\).                      
B. \(0\).                    
C. \(2\).                           
D. \(3\).

Lời giải

Chọn C

Ta có \(f\left( x \right) = 2\,\,\,\left( * \right)\).

Số nghiệm của phương trình \(\left( * \right)\) bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).

Dựa vào hình vẽ, hai đồ thị cắt nhau tại hai điểm.

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình dưới.   Số nghiệm thực của phương trình \(f\left( x \right) = 2\) là A. \(1\).	B. \(0\).	C. \(2\).	D. \(3\). (ảnh 2)

Vậy phương trình \(f\left( x \right) = 2\) có hai nghiệm.

Câu 3

A. \(1\).                      
B. \(0\).                    
C. \( - \frac{4}{3}\).             
D. \(\frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP