Câu hỏi:

27/09/2025 85 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây? (ảnh 1)
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A. \(\left( {0; + \infty } \right)\).              
B. \(\left( { - \infty ; - 1} \right)\). 
C. \(\left( { - \infty ; - 2} \right)\).                    
D. \(\left( { - 2; - 1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Dựa vào bảng biến thiên ta có hàm số nghịch biến trên các khoảng \(\left( { - 2; - 1} \right)\) và \(\left( { - 1;0} \right)\)

Vậy chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(C = \frac{{19200000}}{{{x^2}}} + \frac{{27x}}{{x + 3000}},\,\,\left( {x \ge 1} \right)\) là chi phí đặt hàng và vận chuyển một linh kiện

Ta có \(C' =  - \frac{{38400000}}{{{x^3}}} + \frac{{81000}}{{{{\left( {x + 3000} \right)}^2}}}\).

Cho \(C' = 0 \Leftrightarrow 12800{\left( {x + 3000} \right)^2} - 27{x^3} = 0 \Leftrightarrow x = 2400\).

Lập BBT cho hàm số trên nửa khoảng \(\left[ {1; + \infty } \right)\) ta thu được \({C_{\min }}\) khi \(x = 2400\).

Đáp án: 2400.

Lời giải

Điều kiện \(\left\{ \begin{array}{l}x > 0\\1700 - 7x > 0\end{array} \right. \Leftrightarrow 0 < x < \frac{{1700}}{7}\).

Doanh thu được khi công ty sản xuất và tiêu thụ hết \(x\) sản phẩm là \(R\left( x \right) = xp\left( x \right) = 1700x - 7{x^2}\)

Do đó, lợi nhuận thu được là

\(P\left( x \right) = xp\left( x \right) - C\left( x \right)\)\( = 1700x - 7{x^2} - \left( {16\,000 + 500x - 1,6{x^2} + 0,004{x^3}} \right)\)

\(P\left( x \right) =  - 0,004{x^3} - 5,4{x^2} + 1200x - 16\,000\), \(0 < x < \frac{{1700}}{7}\).

\(P'\left( x \right) =  - 0,012{x^2} - 10,8x + 1200\); \(P'\left( x \right) = 0 \Leftrightarrow  - 0,012{x^2} + 10,8x + 1200 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1000\\x = 100\end{array} \right.\).

Đối chiếu điều kiện ta có \(x = 100\).

Lập bảng biến thiên của hàm số, ta thu được kết quả là \(\mathop {\max }\limits_{\left( {0;\frac{{1700}}{7}} \right)} P\left( x \right) = P\left( {100} \right) = 46\,000\) (triệu).

Vậy công ty cần sản xuất 100 sản phẩm thì lợi nhuận thu được là cao nhất.

Đáp án: 100.

Câu 4

A. \(m = - 5,M = 0\).                                
B. \(m = - 1,M = 0\).                  
C. \(m = - 5,M = - 1\).                             
D. \(m = - 2,M = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[x = 1\].               
B. \[y = 1\].              
C. \[y = 0\].                             
D. \[x = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP