Câu hỏi:

27/09/2025 47 Lưu

Cho hàm số\(y = \frac{{2x - 1}}{{x + 2}}\). Mệnh đề nào sau đây sai?

A. Đồ thị hàm số có đúng hai đường tiệm cận.
B. Hàm số đồng biến trên khoảng \((2; + \infty )\).
C. Hàm số không có giá trị lớn nhất, không có giá trị nhỏ nhất.
D. Hàm số đồng biến trên tập xác định của nó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Hàm số đã cho có:

Tập xác định:\(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

Đạo hàm \(y' = \frac{5}{{{{(x + 2)}^2}}} > 0\,,\,\forall x \ne  - 2\).

Nên hàm số đồng biến trên từng khoảng xác định của nó và hàm số không có giá trị lớn nhất, giá trị nhỏ nhất.

Tiệm cận đứng \(x =  - 2\), tiệm cận ngang \(y = 2\).

Đối chiếu với các phương án ta thấy A đúng, B đúng, C đúng, D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(C = \frac{{19200000}}{{{x^2}}} + \frac{{27x}}{{x + 3000}},\,\,\left( {x \ge 1} \right)\) là chi phí đặt hàng và vận chuyển một linh kiện

Ta có \(C' =  - \frac{{38400000}}{{{x^3}}} + \frac{{81000}}{{{{\left( {x + 3000} \right)}^2}}}\).

Cho \(C' = 0 \Leftrightarrow 12800{\left( {x + 3000} \right)^2} - 27{x^3} = 0 \Leftrightarrow x = 2400\).

Lập BBT cho hàm số trên nửa khoảng \(\left[ {1; + \infty } \right)\) ta thu được \({C_{\min }}\) khi \(x = 2400\).

Đáp án: 2400.

Lời giải

Điều kiện \(\left\{ \begin{array}{l}x > 0\\1700 - 7x > 0\end{array} \right. \Leftrightarrow 0 < x < \frac{{1700}}{7}\).

Doanh thu được khi công ty sản xuất và tiêu thụ hết \(x\) sản phẩm là \(R\left( x \right) = xp\left( x \right) = 1700x - 7{x^2}\)

Do đó, lợi nhuận thu được là

\(P\left( x \right) = xp\left( x \right) - C\left( x \right)\)\( = 1700x - 7{x^2} - \left( {16\,000 + 500x - 1,6{x^2} + 0,004{x^3}} \right)\)

\(P\left( x \right) =  - 0,004{x^3} - 5,4{x^2} + 1200x - 16\,000\), \(0 < x < \frac{{1700}}{7}\).

\(P'\left( x \right) =  - 0,012{x^2} - 10,8x + 1200\); \(P'\left( x \right) = 0 \Leftrightarrow  - 0,012{x^2} + 10,8x + 1200 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1000\\x = 100\end{array} \right.\).

Đối chiếu điều kiện ta có \(x = 100\).

Lập bảng biến thiên của hàm số, ta thu được kết quả là \(\mathop {\max }\limits_{\left( {0;\frac{{1700}}{7}} \right)} P\left( x \right) = P\left( {100} \right) = 46\,000\) (triệu).

Vậy công ty cần sản xuất 100 sản phẩm thì lợi nhuận thu được là cao nhất.

Đáp án: 100.

Câu 4

A. \(m = - 5,M = 0\).                                
B. \(m = - 1,M = 0\).                  
C. \(m = - 5,M = - 1\).                             
D. \(m = - 2,M = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[x = 1\].               
B. \[y = 1\].              
C. \[y = 0\].                             
D. \[x = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP