Câu hỏi:

27/09/2025 2 Lưu

Cho hàm số\(y = \frac{{2x - 1}}{{x + 2}}\). Mệnh đề nào sau đây sai?

A. Đồ thị hàm số có đúng hai đường tiệm cận.
B. Hàm số đồng biến trên khoảng \((2; + \infty )\).
C. Hàm số không có giá trị lớn nhất, không có giá trị nhỏ nhất.
D. Hàm số đồng biến trên tập xác định của nó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Hàm số đã cho có:

Tập xác định:\(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

Đạo hàm \(y' = \frac{5}{{{{(x + 2)}^2}}} > 0\,,\,\forall x \ne  - 2\).

Nên hàm số đồng biến trên từng khoảng xác định của nó và hàm số không có giá trị lớn nhất, giá trị nhỏ nhất.

Tiệm cận đứng \(x =  - 2\), tiệm cận ngang \(y = 2\).

Đối chiếu với các phương án ta thấy A đúng, B đúng, C đúng, D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Từ bảng biến thiên ta có: Hàm số đạt cực đại tại điểm \(x =  - 3\) và đạt cực tiểu tại \(x =  - 1\).

b) Đúng. Từ bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x) =  + \infty \) và \(\mathop {\lim }\limits_{x \to {{( - 2)}^ - }} f(x) =  - \infty \) nên đồ thị hàm số nhận đường thẳng \(x =  - 2\) làm tiệm cận đứng.

c) Sai. Từ bảng biến thiên ta có: Hàm số nghịch biến trên khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 2; - 1} \right)\). Hàm số không xác định tại\(x =  - 2\).

d) Đúng. Từ bảng biến thiên ta có: \(f(x) = 0\) vô nghiệm nên đồ thị hàm số không có điểm chung với trục hoành.

Lời giải

a) Đúng. Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{{10}}\) (giờ)

Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{{10}} \cdot 480000 = 48000.\) (đồng).

b) Sai. Gọi \(x\)(km/h) là vận tốc của tàu, \(x > 0\)

Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{x}\) (giờ)

Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{x} \cdot 480 = \frac{{480}}{x}\)(nghìn đồng)

Hàm chi phí cho phần thứ hai là \(p = k{x^3}\) (nghìn đồng/ giờ)

Khi \(x = 10 \Rightarrow p = 30 \Rightarrow k = 0,03\) nên \(p = 0,03{x^3}\) (nghìn đồng/ giờ)

Do đó chi phí phần 2 để chạy \(1\)km là: \(\frac{1}{x} \cdot 0,03{x^3} = 0,03{x^2}\)(nghìn đồng)

Vậy tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).

c) Đúng. Tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).

Thay \(x = v = 30\)(km/giờ) vào ta có \(f\left( {30} \right) = \frac{{480}}{{30}} + 0,{03.30^2} = 43\) (nghìn đồng).

d) Đúng. \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2} = \frac{{240}}{x} + \frac{{240}}{x} + 0,03{x^2} \ge 3\sqrt[3]{{1728}} = 36.\)

Dấu “=” xảy ra khi \(x = 20\).

Câu 5

A. \[x = 1\].               
B. \[y = 1\].              
C. \[y = 0\].                             
D. \[x = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m = - 5,M = 0\).                                
B. \(m = - 1,M = 0\).                  
C. \(m = - 5,M = - 1\).                             
D. \(m = - 2,M = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP