Câu hỏi:

29/09/2025 4 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn.

Cho hàm số  \(y = f\left( x \right)\) có bảng biến thiên như sau

Hàm số đã cho đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây

A. \(\left( { - \infty ;4} \right)\).                                                                                                 
B. \(\left( {2; + \infty } \right)\).                            
C. \(\left( { - 1;1} \right)\).                                                                                                 
D. \(\left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ bảng biến thiên suy ra hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {1; + \infty } \right)\) suy ra hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: a) Đ, b) S, c) S, d) S

a) Với \(m = 0\) hàm số trở thành \(y = {\log _2}x\) là hàm số đồng biến trên khoảng \(\left( {0;\, + \infty } \right)\).

b) Với \(m = 1\) hàm số trở thành \(y = {\log _2}\left( {{x^2} + x + 1} \right)\) có \(D = \mathbb{R}\)

Khi đó : \(y' = \frac{{2x + 1}}{{\left( {{x^2} + x + 1} \right)\ln 2}} = 0 \Leftrightarrow x =  - \frac{1}{2}\) .

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;\, - \frac{1}{2}} \right)\) và đồng biến trên khoảng \(\left( { - \frac{1}{2};\, + \infty } \right)\) .

c) \(y' = \frac{{2mx + 1}}{{\left( {m{x^2} + x + m} \right).\ln 2}}\)

d) Hàm số có \(D = \mathbb{R} \Leftrightarrow m{x^2} + x + m > 0,\,\forall x \in \mathbb{R}\)

+) \(m = 0\) không thoả mãn.

+) \(m \ne 0\) hàm số có \(D = \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta  = 1 - 4{m^2} < 0\end{array} \right. \Leftrightarrow m > \frac{1}{2}\) .

Khi đó, hàm số đồng biến trên khoảng \(\left( {2;\, + \infty } \right)\)\( \Leftrightarrow \left( {2; + \infty } \right) \subset \left( { - \frac{1}{{2m}};\, + \infty } \right) \Leftrightarrow  - \frac{1}{{2m}} \le 2 \Leftrightarrow m \ge  - \frac{1}{4}\)

Vậy với \(m > \frac{1}{2}\) thì hàm số có tập xác định \(D = \mathbb{R}\) và đồng biến trên khoảng \(\left( {2;\, + \infty } \right)\).

Lời giải

Đáp án: a) S, b) Đ, c) Đ, d) Đ

a) Với \(m = 0\) hàm số trở thành: \(y = \sqrt {{x^2} + 9} \) có \(y' = \frac{x}{{\sqrt {{x^2} + 9} }} = 0 \Leftrightarrow x = 0\).

Hàm số có cực trị tại \(x = 0\).

b) Với \(m = 1\) hàm số trở thành: \(y = \sqrt {{x^2} - 2x + 9} \) có \(y' = \frac{{x - 1}}{{\sqrt {{x^2} - 2x + 9} }} = 0 \Leftrightarrow x = 1\).

\(y'\) đổi dấu từ âm sang dương khi đi qua \(x = 1\) nên hàm số đạt cực tiểu tại \(x = 1\).

c) \(y' = \frac{{{{\left( {{x^2} - 2mx + 9} \right)}^\prime }}}{{2\sqrt {{x^2} - 2mx + 9} }} = \frac{{2x - 2m}}{{2\sqrt {{x^2} - 2mx + 9} }} = \frac{{x - m}}{{\sqrt {{x^2} - 2mx + 9} }}\)

d)  Điều kiện: \[{x^2} - 2mx + 9 \ge 0\left( * \right)\]

\[y' = \frac{{x - m}}{{\sqrt {{x^2} - 2mx + 9} }}\],

\[y' = 0\]\[ \Leftrightarrow x - m = 0\]\[ \Leftrightarrow x = m\].

Đồ thị hàm số có cực trị \[ \Leftrightarrow x = m\] thỏa mãn \[ \Leftrightarrow {m^2} - 2{m^2} + 9 \ge 0\]\[ \Leftrightarrow  - 3 \le m \le 3\].

Vậy có 7 giá trị nguyên của \(m\) để hàm số đã cho có cực trị.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP