Câu hỏi:

29/09/2025 44 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn.

Cho hàm số  \(y = f\left( x \right)\) có bảng biến thiên như sau

Hàm số đã cho đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây

A. \(\left( { - \infty ;4} \right)\).                                                                                                 
B. \(\left( {2; + \infty } \right)\).                            
C. \(\left( { - 1;1} \right)\).                                                                                                 
D. \(\left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ bảng biến thiên suy ra hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {1; + \infty } \right)\) suy ra hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 1.

Hàm số xác định trên \(\left[ {0;\pi } \right]\).

Ta có \[y =  - \frac{x}{4} + {\cos ^2}\frac{x}{2} =  - \frac{x}{4} + \frac{1}{2} + \frac{1}{2}\cos x\].

Suy ra \[y' =  - \frac{1}{4} - \frac{1}{2}\sin x\].

\[y' = 0 \Leftrightarrow  - \frac{1}{4} - \frac{1}{2}\sin x = 0 \Leftrightarrow \sin x =  - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

Vì \(x \in \left[ { - \pi ;\pi } \right]\) nên \(x \in \left\{ { - \frac{{5\pi }}{6}; - \frac{\pi }{6}} \right\}\).

Bảng biến thiên

Hàm số \[y =  - \frac{x}{4} + {\cos ^2}\frac{x}{2}\] có bao nhiêu điểm cực đại trên đoạn \(\left[ { - \pi ;\pi } \right]\)? (ảnh 1)

Vậy hàm số có 1 điểm cực đại.

Lời giải

a) Ta có \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\) suy ra \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\).

Do đó a) đúng.

b) \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 3\\x =  - 1\end{array} \right.\)

\(y\left( { - 3} \right) =  - 3\); \(y\left( { - 1} \right) = 1\)

Suy ra \(A\left( { - 3\,;\, - 3} \right)\) và \(B\left( { - 1\,;\,1} \right)\)

Do \({x_A}.{x_B} = 3 > 0\) nên \(A\) và \(B\) nằm ở cùng một phía của trục tung.

Do đó b) sai.

c) Ta có \(\overrightarrow {AB}  = \left( {2\,;\,4} \right)\)

Suy ra đường thẳng \(AB\) có phương trình là \( - 2\left( {x + 1} \right) + \left( {y - 1} \right) = 0\)\( \Leftrightarrow y = 2x + 3\).

Do đó c) sai.

d) Đường thẳng \(\Delta \) có phương trình là \(x + 2y + 4 = 0\) nên \(\Delta \) có vtpt \(\overrightarrow {{n_\Delta }}  = \left( {1\,;\,2} \right)\).

\(\overrightarrow {AB}  = \left( {2\,;\,4} \right)\)

Suy ra \(\overrightarrow {{n_\Delta }} \) và \(\overrightarrow {AB} \) cùng phương với nhau. Do đó \(AB \bot \Delta \).

Ta có \(I\left( { - 2\,;\, - 1} \right)\) là trung điểm của đoạn thẳng \(AB\) và \(I \in \Delta \).

Vậy \(A\) và \(B\) đối xứng nhau qua đường thẳng \(\Delta \).

Do đó d) đúng.

Câu 4

A. \(\left( { - \infty ; - 3} \right)\).                                
B. \(\left( { - 1;3} \right)\).                                
C. \(\left( { - 3;1} \right)\).                                
D. \(\left( {1;\, + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[5\].                                  
B. \[3\].                               
C. \[4\].                                       
D. \[6\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP