Cho hàm số \[y = f\left( x \right)\] có đạo hàm trên \[\mathbb{R}.\] Đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ

Khẳng định nào sau đây đúng?
Cho hàm số \[y = f\left( x \right)\] có đạo hàm trên \[\mathbb{R}.\] Đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ
Quảng cáo
Trả lời:

Ta có A là đáp án sai vì \[f'\left( x \right) < 0,\forall x \in \left( {1;4} \right)\]; B là đáp án sai vì \[f'\left( x \right) > 0,\forall x \in \left( { - 1;1} \right)\]; C là đáp án đúng vì \[f'\left( x \right) > 0,\forall x \in \left( { - 1;1} \right)\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: a) Đ, b) S, c) S, d) S
a) Với \(m = 0\) hàm số trở thành \(y = {\log _2}x\) là hàm số đồng biến trên khoảng \(\left( {0;\, + \infty } \right)\).
b) Với \(m = 1\) hàm số trở thành \(y = {\log _2}\left( {{x^2} + x + 1} \right)\) có \(D = \mathbb{R}\)
Khi đó : \(y' = \frac{{2x + 1}}{{\left( {{x^2} + x + 1} \right)\ln 2}} = 0 \Leftrightarrow x = - \frac{1}{2}\) .
Hàm số nghịch biến trên khoảng \(\left( { - \infty ;\, - \frac{1}{2}} \right)\) và đồng biến trên khoảng \(\left( { - \frac{1}{2};\, + \infty } \right)\) .
c) \(y' = \frac{{2mx + 1}}{{\left( {m{x^2} + x + m} \right).\ln 2}}\)
d) Hàm số có \(D = \mathbb{R} \Leftrightarrow m{x^2} + x + m > 0,\,\forall x \in \mathbb{R}\)
+) \(m = 0\) không thoả mãn.
+) \(m \ne 0\) hàm số có \(D = \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta = 1 - 4{m^2} < 0\end{array} \right. \Leftrightarrow m > \frac{1}{2}\) .
Khi đó, hàm số đồng biến trên khoảng \(\left( {2;\, + \infty } \right)\)\( \Leftrightarrow \left( {2; + \infty } \right) \subset \left( { - \frac{1}{{2m}};\, + \infty } \right) \Leftrightarrow - \frac{1}{{2m}} \le 2 \Leftrightarrow m \ge - \frac{1}{4}\)
Vậy với \(m > \frac{1}{2}\) thì hàm số có tập xác định \(D = \mathbb{R}\) và đồng biến trên khoảng \(\left( {2;\, + \infty } \right)\).
Lời giải
Đáp án: a) S, b) Đ, c) Đ, d) Đ
a) Với \(m = 0\) hàm số trở thành: \(y = \sqrt {{x^2} + 9} \) có \(y' = \frac{x}{{\sqrt {{x^2} + 9} }} = 0 \Leftrightarrow x = 0\).
Hàm số có cực trị tại \(x = 0\).
b) Với \(m = 1\) hàm số trở thành: \(y = \sqrt {{x^2} - 2x + 9} \) có \(y' = \frac{{x - 1}}{{\sqrt {{x^2} - 2x + 9} }} = 0 \Leftrightarrow x = 1\).
\(y'\) đổi dấu từ âm sang dương khi đi qua \(x = 1\) nên hàm số đạt cực tiểu tại \(x = 1\).
c) \(y' = \frac{{{{\left( {{x^2} - 2mx + 9} \right)}^\prime }}}{{2\sqrt {{x^2} - 2mx + 9} }} = \frac{{2x - 2m}}{{2\sqrt {{x^2} - 2mx + 9} }} = \frac{{x - m}}{{\sqrt {{x^2} - 2mx + 9} }}\)
d) Điều kiện: \[{x^2} - 2mx + 9 \ge 0\left( * \right)\]
\[y' = \frac{{x - m}}{{\sqrt {{x^2} - 2mx + 9} }}\],
\[y' = 0\]\[ \Leftrightarrow x - m = 0\]\[ \Leftrightarrow x = m\].
Đồ thị hàm số có cực trị \[ \Leftrightarrow x = m\] thỏa mãn \[ \Leftrightarrow {m^2} - 2{m^2} + 9 \ge 0\]\[ \Leftrightarrow - 3 \le m \le 3\].
Vậy có 7 giá trị nguyên của \(m\) để hàm số đã cho có cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.