Tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x + 1}}{{x - 1}}\) là:
Quảng cáo
Trả lời:

Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{3x + 1}}{{x - 1}} = 3\)và \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{3x + 1}}{{x - 1}} = 3\) nên đường thẳng \[y = 3\] là tiệm cận ngang của đồ thị hàm số.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S |
b) S |
c) S |
d) Đ |
Ta có:
Xét bảng biến thiên của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 3;\,2} \right]\]
Câu 2
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {x - \sqrt {{x^2} + 2x + 3} } \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x - 3}}{{x + \sqrt {{x^2} + 2x + 3} }}\).
\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2 - \frac{3}{x}}}{{1 + \sqrt {1 + \frac{2}{x} + \frac{3}{{{x^2}}}} }} = - 1\).
Vậy phương trình đường tiệm cận của đồ thị hàm số là \(y = - 1\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.