Gọi \(m\) và \(M\) lần lượt là các giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right) = {e^{2 - 3x}}\) trên đoạn \(\left[ {0\,;\,2} \right].\) Mối liên hệ giữa \(M\) và \(m\) là
Quảng cáo
Trả lời:

Tập xác định \(D = \mathbb{R}\).
\(y' = - 3{e^{2 - 3x}} < 0,\,\,\forall x \in \left[ {0\,;\,2} \right]\)
Ta có \(y\left( 0 \right) = {e^2}\), \(y\left( 2 \right) = {e^{ - 4}}\).
Vậy \(m.M = {e^{ - 4}}.{e^2} = {e^{ - 2}} = \frac{1}{{{e^2}}}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Tập xác định \(D = \mathbb{R}\).
Đặt \(t = {\cos ^2}x,\) \(t \in \left[ {0\,;\,1} \right]\).
Hàm số viết lại \(y = {t^2} - t + 4\)
\(y' = 2t - 1\)
\(y' = 0 \Leftrightarrow t = \frac{1}{2}\)
Ta có \(y\left( 0 \right) = 4,\) \(y\left( 1 \right) = 4,\) \(y\left( {\frac{1}{2}} \right) = \frac{{15}}{4}\).
Vậy giá trị lớn nhất là 4.
Câu 2
Lời giải
Ta có \(y' = \frac{{2x}}{{\left( {{x^2} + 4} \right)\ln 2}} = 0 \Rightarrow x = 0\).
Khi đó: \(y\left( { - 2} \right) = {\log _2}8 = 3;\,\,\,y\left( 0 \right) = {\log _2}4 = 2;\,\,\,y\left( 5 \right) = {\log _2}29\).
Vậy giá trị lớn nhất của hàm số trên đoạn \[\left[ { - 2;\,5} \right]\] là \({\log _2}29\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.