Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) tại mọi \(x \in \mathbb{R}\). Đồ thị của hàm số \(y = f'\left( x \right)\) được cho như hình vẽ dưới đây.
![. Biết rằng \(f\left( 0 \right) + f\left( 3 \right) = f\left( 2 \right) + f\left( 5 \right)\). Hãy tìm giá trị nhỏ nhất, giá trị lớn nhất của \(y = f\left( x \right)\) trên đoạn \(\left[ {0;5} \right]\)? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/17-1759149805.png)
Biết rằng \(f\left( 0 \right) + f\left( 3 \right) = f\left( 2 \right) + f\left( 5 \right)\). Hãy tìm giá trị nhỏ nhất, giá trị lớn nhất của \(y = f\left( x \right)\) trên đoạn \(\left[ {0;5} \right]\)?
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) tại mọi \(x \in \mathbb{R}\). Đồ thị của hàm số \(y = f'\left( x \right)\) được cho như hình vẽ dưới đây.
Biết rằng \(f\left( 0 \right) + f\left( 3 \right) = f\left( 2 \right) + f\left( 5 \right)\). Hãy tìm giá trị nhỏ nhất, giá trị lớn nhất của \(y = f\left( x \right)\) trên đoạn \(\left[ {0;5} \right]\)?
Quảng cáo
Trả lời:

Ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ {0;5} \right]\)
Từ bảng biến thiên ta thấy \(\mathop {Min}\limits_{\left[ {0;5} \right]} f\left( x \right) = f\left( 2 \right);f\left( 2 \right) < f\left( 3 \right)\)
Mà \(f\left( 0 \right) + f\left( 3 \right) = f\left( 2 \right) + f\left( 5 \right)\) nên \(f\left( 5 \right) > f\left( 0 \right)\)
Vậy \(\mathop {Max}\limits_{\left[ {0;5} \right]} f\left( x \right) = f\left( 5 \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 2.
Phương trình tiệm cận ngang là \(y = m\)
Phương trình tiệm cận đứng là \(x = - m\)
Theo đề bài ta có: \(\left| m \right|\left| { - m} \right| = 4 \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm 2\)
Vậy S có 2 phần tử.
Câu 2
Lời giải
Xét hàm số \(f\left( x \right) = \frac{{{x^2} + 4}}{x},\,\forall x \in \left( {0; + \infty } \right)\)
Ta có \(f'\left( x \right) = \frac{{{x^2} - 4}}{{{x^2}}}\). Khi đó \(f'\left( x \right) = 0,x \in \left( {0; + \infty } \right) \Leftrightarrow x = 2\).
Ngoài ra: \(\mathop {\lim }\limits_{x \to {0^ + }} = + \infty ,\,\mathop {\lim }\limits_{x \to + \infty } = + \infty \)
Ta có bảng biến thiên hàm số như sau:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left[ \begin{array}{l}m > 2\\m < - \,2\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.