Cho một tấm nhôm hình chữ nhật có kích thước \[15\,{\rm{cm}} \times 24\,{\rm{cm}}\]. Người ta cắt bỏ 4 góc của tâm tôn 4 miếng hình vuông bằng nhau rồi gò lại thành một hình hộp chữ nhật không có nắp. Để thể tích của hình hộp đó lớn nhất thì độ dài cạnh hình vuông của các miếng tôn bị cắt bỏ bằng
Quảng cáo
Trả lời:

Chọn A
Giả sử độ dài cạnh hình vuông của các miếng tôn bị cắt bỏ bằng \[x\,(0 < 2x < 15 \Leftrightarrow 0 < x < \frac{{15}}{2})\]. Khi đó hình hộp chữ nhật có chiều cao bằng x, chiều rộng bằng \[15 - 2x\] và chiều dài bằng \[24 - 2x\]. Suy ra hình hộp chữ nhật có thể tích \[V = x\left( {15 - 2x} \right)\left( {24 - 2x} \right) = 4{x^3} - 78{x^2} + 360x\].
Xét hàm \[f\left( x \right) = 4{x^3} - 78{x^2} + 360x\] trên \[\left( {0;\frac{{15}}{2}} \right)\].
\[f'\left( x \right) = 12{x^2} - 156x + 360 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 10\end{array} \right.\]. Bảng biến thiên hàm số \[f\left( x \right)\] trên \[\left( {0;\frac{{15}}{2}} \right)\]:
Dựa vào bảng biến thiên ta có hàm số đạt giá trị lớn nhất trên \[\left( {0;\frac{{15}}{2}} \right)\] tại \[x = 3\] hay hình hộp chữ nhật có thể tích lớn nhất khi độ dài cạnh hình vuông của miếng tôn bị cắt bỏ bằng 3 cm.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 2.
Phương trình tiệm cận ngang là \(y = m\)
Phương trình tiệm cận đứng là \(x = - m\)
Theo đề bài ta có: \(\left| m \right|\left| { - m} \right| = 4 \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm 2\)
Vậy S có 2 phần tử.
Câu 2
Lời giải
Xét hàm số \(f\left( x \right) = \frac{{{x^2} + 4}}{x},\,\forall x \in \left( {0; + \infty } \right)\)
Ta có \(f'\left( x \right) = \frac{{{x^2} - 4}}{{{x^2}}}\). Khi đó \(f'\left( x \right) = 0,x \in \left( {0; + \infty } \right) \Leftrightarrow x = 2\).
Ngoài ra: \(\mathop {\lim }\limits_{x \to {0^ + }} = + \infty ,\,\mathop {\lim }\limits_{x \to + \infty } = + \infty \)
Ta có bảng biến thiên hàm số như sau:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left[ \begin{array}{l}m > 2\\m < - \,2\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.