Cho hàm số \(y = \frac{{{x^2} + 4x + 16}}{x}\). Tiệm cận xiên của đồ thị hàm số tạo với hai trục tọa độ một tam giác có diện tích bằng
Quảng cáo
Trả lời:

Ta có \(y = \frac{{{x^2} + 4x + 16}}{x} = x + 4 + \frac{{16}}{x}\).
\[\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 4} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{16}}{x}} \right) = 0,\,\,\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 4} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{16}}{x}} \right) = 0\]
Đồ thị hàm số có đường tiệm cận xiên: \(y = x + 4\).
Tọa độ giao điểm của đường tiệm cận xiên với hai trục tọa độ là : \(A\left( {0;\,4} \right),\,B\left( { - 4;\,0} \right)\).
Diện tích tam giác \(OAB\)là \(S = \frac{1}{2}.OA.OB = \frac{1}{2}4.4 = 8\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\,\)là độ dài đáy nhỏ của hình thang \(\left( {x > 0} \right)\). Ta có :
Đáy lớn là \(2x\,\).
Chiều cao của hình thang là \(h = \frac{{2S}}{{x + 2x}}\, = \frac{{16}}{x}\).
Độ dài cạnh còn lại của hình thang là \[\sqrt {{x^2} + {{\left( {\frac{{16}}{x}} \right)}^2}} \, = \sqrt {{x^2} + \frac{{256}}{{{x^2}}}} \].
Khi đó \[P\left( x \right) = x + \frac{{16}}{x} + 2x + \sqrt {{x^2} + \frac{{256}}{{{x^2}}}} = 3x + \sqrt {{x^2} + \frac{{256}}{{{x^2}}}} + \frac{{16}}{x}\] (tập xác định \(D = \left( {0;\, + \infty } \right)\)).
Do \(\mathop {\lim }\limits_{x \to + \infty } P\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {3x + \sqrt {{x^2} + \frac{{256}}{{{x^2}}}} + \frac{{16}}{x}} \right] = \mathop {\lim }\limits_{x \to + \infty } x\left[ {3 + \sqrt {1 + \frac{{256}}{{{x^4}}}} + \frac{{16}}{{{x^2}}}} \right] = + \infty \) nên đồ thị hàm số không có tiệm cận ngang.
+ \(\mathop {\lim }\limits_{x \to {0^ + }} P\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x}\left[ {3{x^2} + \sqrt {{x^4} + 256} + 16} \right] = + \infty \) nên đồ thị hàm số có một tiệm cận đứng là trục \(Oy\)
+\(\mathop {\lim }\limits_{x \to + \infty } \left( {P\left( x \right) - 4x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {\sqrt {{x^2} + \frac{{256}}{{{x^2}}}} - x + \frac{{16}}{x}} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{256}}{{{x^2}\sqrt {{x^2} + \frac{{256}}{{{x^2}}}} + x}} + \frac{{16}}{{{x^2}}}} \right] = 0\).
Khi đó đồ thị hàm số có 1 tiệm cận xiên \[y = 4x\].
Vậy đồ thị hàm số có 2 tiệm cận.
Lời giải
Đáp án: \( - 9\).
Điều kiện: \(\left\{ \begin{array}{l}x \le 1\\{x^2} + 4x + m \ne 0\end{array} \right.\).
Ta có: là tiệm cận ngang của đồ thị hàm số.
Đồ thị hàm số có \(3\) đường tiệm cận \( \Leftrightarrow \) Đồ thị hàm số có \(2\) đường tiệm cận đứng \( \Leftrightarrow \) Phương trình \({x^2} + 4x + m = 0\) có 2 nghiệm phân biệt thuộc \(\left( { - \infty ;1} \right]\).
Ta có: \({x^2} + 4x + m = 0\)\( \Leftrightarrow {x^2} + 4x = - m\).
Bảng biến thiên của hàm số \(y = g\left( x \right) = {x^2} + 4x\):
Phương trình \({x^2} + 4x + m = 0\) có 2 nghiệm phân biệt thuộc \(\left( { - \infty ;1} \right]\) \( \Leftrightarrow - 5 \le m < 4\).
\( \Rightarrow \)\(S = \left\{ { - 5\,;\, - 4\,;\, - 3\,;\, - 2\,;\, - 1\,;\,0\,;\,1\,;\,2\,;\,3\,} \right\}\).
Vậy tổng giá trị các phần tử của tập \(S\) bằng \( - 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.