Chi phí xuất bản \(x\) cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, giấy in…) được cho bởi \(C\left( x \right) = {x^2} - 2000x + {10^8}\) đồng. Chi phí phát hành cho mỗi cuốn là \(4\) nghìn đồng. \(M\left( x \right) = \frac{{T\left( x \right)}}{x}\) với \(T\left( x \right)\) là tổng chi phí (xuất bản và phát hành) cho \(x\) cuốn tạp chí, được gọi là chi phí trung bình cho một cuốn tạp chí khi xuất bản \(x\) cuốn. Khi số lượng cuốn tạp chí phát hành cực lớn thì chi phí trung bình cho mỗi cuốn tạp chí \(M\left( x \right)\) sẽ tiệm cận với đường nào.
Quảng cáo
Trả lời:

Theo giả thiết, ta có:
\(T\left( x \right) = C\left( x \right) + 4000x = {x^2} + 2000x + {10^8}\).
\(M\left( x \right) = \frac{{T\left( x \right)}}{x} = x + \frac{{{{10}^8}}}{x} + 2000\) .
\(\mathop {\lim }\limits_{x \to + \infty } \left( {M\left( x \right) - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {x + \frac{{{{10}^8}}}{x} + 2000 - \left( {x + 2000} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{{10}^8}}}{x}} \right] = 0\)
Khi đó đồ thị hàm số có 1 tiệm cận xiên \[y = x + 2000\]. Khi số lượng cuốn tạp chí phát hành cực lớn thì chi phí trung bình cho mỗi cuốn tạp chí \(M\left( x \right)\) sẽ tiệm cận với đường \[y = x + 2000\].Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nhận xét: Dựa vào bảng biến thiên ta thấy \(f\left( x \right) \ge 1\).
Đồ thị hàm số \(y = \frac{{f\left( x \right)}}{{f\left( x \right) - m + 2}}\) có hai đường tiệm cận ngang có phương trình là \(y = \frac{5}{{7 - m}}\) và \(y = \frac{2}{{4 - m}}\).
Xét phương trình \(f\left( x \right) - m + 2 = 0 \Leftrightarrow f\left( x \right) = m - 2\,\,\left( * \right)\)
Để đồ thị hàm số có 4 đường tiệm cận thì \(\left( * \right)\) có hai nghiệm phân biệt suy ra
\(\left[ \begin{array}{l}1 < m - 2 < 2\\m - 2 = 3\\m - 2 \ge 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3 < m < 4\\m = 5\\m \ge 7\end{array} \right.\).
Vì \(m \in \mathbb{Z},m \in \left[ {0\,;\,10} \right] \Rightarrow m \in \left\{ {5\,;\,7\,;\,8\,;\,9\,;\,10} \right\}\).
Đáp án: 5
Lời giải
Đáp án: \( - 9\).
Điều kiện: \(\left\{ \begin{array}{l}x \le 1\\{x^2} + 4x + m \ne 0\end{array} \right.\).
Ta có: là tiệm cận ngang của đồ thị hàm số.
Đồ thị hàm số có \(3\) đường tiệm cận \( \Leftrightarrow \) Đồ thị hàm số có \(2\) đường tiệm cận đứng \( \Leftrightarrow \) Phương trình \({x^2} + 4x + m = 0\) có 2 nghiệm phân biệt thuộc \(\left( { - \infty ;1} \right]\).
Ta có: \({x^2} + 4x + m = 0\)\( \Leftrightarrow {x^2} + 4x = - m\).
Bảng biến thiên của hàm số \(y = g\left( x \right) = {x^2} + 4x\):
Phương trình \({x^2} + 4x + m = 0\) có 2 nghiệm phân biệt thuộc \(\left( { - \infty ;1} \right]\) \( \Leftrightarrow - 5 \le m < 4\).
\( \Rightarrow \)\(S = \left\{ { - 5\,;\, - 4\,;\, - 3\,;\, - 2\,;\, - 1\,;\,0\,;\,1\,;\,2\,;\,3\,} \right\}\).
Vậy tổng giá trị các phần tử của tập \(S\) bằng \( - 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.