Câu hỏi:

30/09/2025 217 Lưu

Chi phí xuất bản \(x\) cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, giấy in…) được cho bởi \(C\left( x \right) = {x^2} - 2000x + {10^8}\) đồng. Chi phí phát hành cho mỗi cuốn là \(4\) nghìn đồng. \(M\left( x \right) = \frac{{T\left( x \right)}}{x}\) với \(T\left( x \right)\) là tổng chi phí (xuất bản và phát hành) cho \(x\) cuốn tạp chí, được gọi là chi phí trung bình cho một cuốn tạp chí khi xuất bản \(x\) cuốn. Khi số lượng cuốn tạp chí phát hành cực lớn thì chi phí trung bình cho mỗi cuốn tạp chí \(M\left( x \right)\) sẽ tiệm cận với đường nào.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo giả thiết, ta có:

\(T\left( x \right) = C\left( x \right) + 4000x = {x^2} + 2000x + {10^8}\).

\(M\left( x \right) = \frac{{T\left( x \right)}}{x} = x + \frac{{{{10}^8}}}{x} + 2000\) .

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {M\left( x \right) - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left[ {x + \frac{{{{10}^8}}}{x} + 2000 - \left( {x + 2000} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\frac{{{{10}^8}}}{x}} \right] = 0\)

Khi đó đồ thị hàm số có 1 tiệm cận xiên \[y = x + 2000\]. Khi số lượng cuốn tạp chí phát hành cực lớn thì chi phí trung bình cho mỗi cuốn tạp chí \(M\left( x \right)\) sẽ tiệm cận với đường \[y = x + 2000\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(8\).                       
B. \(16\).
C. \(4\).                           
D. \(12\).

Lời giải

Ta có \(y = \frac{{{x^2} + 4x + 16}}{x} = x + 4 + \frac{{16}}{x}\).

\[\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {x + 4} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{16}}{x}} \right) = 0,\,\,\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - \left( {x + 4} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{16}}{x}} \right) = 0\]

Đồ thị hàm số có đường tiệm cận xiên: \(y = x + 4\).

Tọa độ giao điểm của đường tiệm cận xiên với hai trục tọa độ là : \(A\left( {0;\,4} \right),\,B\left( { - 4;\,0} \right)\).

Diện tích tam giác \(OAB\)là \(S = \frac{1}{2}.OA.OB = \frac{1}{2}4.4 = 8\).

Lời giải

Gọi \(x\,\)là độ dài đáy nhỏ của hình thang \(\left( {x > 0} \right)\). Ta có :

Đáy lớn là \(2x\,\).

Chiều cao của hình thang là \(h = \frac{{2S}}{{x + 2x}}\, = \frac{{16}}{x}\).

Độ dài cạnh còn lại của hình thang là \[\sqrt {{x^2} + {{\left( {\frac{{16}}{x}} \right)}^2}} \, = \sqrt {{x^2} + \frac{{256}}{{{x^2}}}} \].

Khi đó \[P\left( x \right) = x + \frac{{16}}{x} + 2x + \sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  = 3x + \sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  + \frac{{16}}{x}\]  (tập xác định \(D = \left( {0;\, + \infty } \right)\)).

Do \(\mathop {\lim }\limits_{x \to  + \infty } P\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \left[ {3x + \sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  + \frac{{16}}{x}} \right] = \mathop {\lim }\limits_{x \to  + \infty } x\left[ {3 + \sqrt {1 + \frac{{256}}{{{x^4}}}}  + \frac{{16}}{{{x^2}}}} \right] =  + \infty \) nên đồ thị hàm số không có tiệm cận ngang.

+ \(\mathop {\lim }\limits_{x \to {0^ + }} P\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x}\left[ {3{x^2} + \sqrt {{x^4} + 256}  + 16} \right] =  + \infty \) nên đồ thị hàm số có một tiệm cận đứng là trục \(Oy\)

+\(\mathop {\lim }\limits_{x \to  + \infty } \left( {P\left( x \right) - 4x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  - x + \frac{{16}}{x}} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\frac{{256}}{{{x^2}\sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  + x}} + \frac{{16}}{{{x^2}}}} \right] = 0\).

Khi đó đồ thị hàm số có 1 tiệm cận xiên \[y = 4x\].

Vậy đồ thị hàm số có 2 tiệm cận.

Câu 5

A. \(y = \frac{x}{{1 + \sqrt x }}\).                  
B. \(y = {x^3} - 3x\).                          
C. \(y = {\log _2}x\).  
D. \(y = x + \sqrt {{x^2} + 4} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP