Câu hỏi:

30/09/2025 5 Lưu

PHẦN I. CÂU TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN

Học sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi học sinh chỉ chọn một phương án.

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong như trong hình bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?  (ảnh 1)

A. \(\left( {0;2} \right)\).                                
B. \(\left( { - \infty ;0} \right)\).         
C. \(\left( {1; + \infty } \right)\).                       
D. \(\left( { - 1;1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Từ đồ thị hàm số ta thấy trong khoảng \(\left( { - 1;1} \right)\)\(x\) tăng, \(y\)giảm (đồ thị hàm số đi xuống). Hàm số đã cho nghịch biến trên khoảng \(\left( { - 1;1} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: -3

Ta có: \[y = ax + 2 + \frac{b}{{x + c}}\].

- Nên đồ thị của hàm số có đường tiệm cận xiên là \(y = ax + 2\), mà như hình vẽ đường tiệm cận xiên đi qua điểm \(\left( {1;1} \right)\) suy ra \(1 = a.1 + 2 \Leftrightarrow a =  - 1\).

- Đồ thị của hàm số có đường tiệm cận đứng là \(x = 1\) nên \(1 + c = 0 \Leftrightarrow c =  - 1\).

Khi đó hàm số đã cho có dạng \(y =  - x + 2 + \frac{b}{{x - 1}}\).

- Mặt khác đồ thị hàm số đi qua điểm \(\left( {0;3} \right)\) nên \( - 0 + 2 + \frac{b}{{0 - 1}} = 3 \Leftrightarrow 2 - b = 3 \Leftrightarrow b =  - 1\).

Vậy \(P = a + b + c =  - 1 + \left( { - 1} \right) + \left( { - 1} \right) =  - 3.\)

Lời giải

Đáp số: 1.

Ta có \(y' = 3{x^2} - 4x + 1\). \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{1}{3}\end{array} \right.\).

Bảng biến thiên của hàm số đã cho:

 Khoảng cách từ điểm cực tiểu của đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 1\) đến trục hoành là (ảnh 1)

Vậy đồ thị hàm số đã cho có điểm cực tiểu là \(A\left( {1; - 1} \right)\). Khoảng cách từ điểm cực tiểu của đồ thị hàm số đã cho đến trục hoành bằng 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP