PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Cho hàm số \[y = \frac{1}{3}{x^3} - 2{x^2} + mx + 1\].
a) Hàm số đồng biến trên \[\mathbb{R}\] khi \[m = 5\].
b) Hàm số có cực trị khi \[m = 5\].
c) Để hàm số có \[2\] cực trị thì \[m < 4\].
d) Khi \[m \ge 4\]thì hàm số đồng biến trên \[\left( {1,4} \right)\].
PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.Cho hàm số \[y = \frac{1}{3}{x^3} - 2{x^2} + mx + 1\].
a) Hàm số đồng biến trên \[\mathbb{R}\] khi \[m = 5\].
b) Hàm số có cực trị khi \[m = 5\].
c) Để hàm số có \[2\] cực trị thì \[m < 4\].
d) Khi \[m \ge 4\]thì hàm số đồng biến trên \[\left( {1,4} \right)\].
Quảng cáo
Trả lời:

Câu 1 |
Giải chi tiết( giải thích) |
a) Đ |
Khi \[m = 5\] thì \[y = \frac{1}{3}{x^3} - 2{x^2} + 5x + 1\]. Ta có \[y' = {x^2} - 4x + 5 = {(x - 2)^2} + 1 > 0,\forall x \in \mathbb{R}\]. Vậy hàm đồng biến trên \[\mathbb{R}\]. |
b) s |
Dựa vào câu a, hàm số trên không có cực trị khi \[m = 5\]. |
c) Đ |
Ta có \[y' = {x^2} - 4x + m\]. Để hàm số có \[2\]cực trị thì\[y' = 0\]có \[2\]nghiệm đơn hay \[\Delta ' = 4 - m > 0 \Leftrightarrow m < 4\]. |
d) Đ |
Ta có \[y' = {x^2} - 4x + m\]. Để hàm số đồng biến trên \[\left( {1,4} \right)\] thì. \[\begin{array}{l}y' = {x^2} - 4x + m \ge 0,\forall x \in \left( {1,4} \right)\\ \Leftrightarrow m \ge - {x^2} + 4x\\ \Leftrightarrow m \ge \mathop {\max }\limits_{[1,4]} g(x) = - {x^2} + 4x\\ \Leftrightarrow m \ge g(2)\\ \Leftrightarrow m \ge 4\end{array}\] |
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: -3
Ta có: \[y = ax + 2 + \frac{b}{{x + c}}\].
- Nên đồ thị của hàm số có đường tiệm cận xiên là \(y = ax + 2\), mà như hình vẽ đường tiệm cận xiên đi qua điểm \(\left( {1;1} \right)\) suy ra \(1 = a.1 + 2 \Leftrightarrow a = - 1\).
- Đồ thị của hàm số có đường tiệm cận đứng là \(x = 1\) nên \(1 + c = 0 \Leftrightarrow c = - 1\).
Khi đó hàm số đã cho có dạng \(y = - x + 2 + \frac{b}{{x - 1}}\).
- Mặt khác đồ thị hàm số đi qua điểm \(\left( {0;3} \right)\) nên \( - 0 + 2 + \frac{b}{{0 - 1}} = 3 \Leftrightarrow 2 - b = 3 \Leftrightarrow b = - 1\).
Vậy \(P = a + b + c = - 1 + \left( { - 1} \right) + \left( { - 1} \right) = - 3.\)
Lời giải
Đáp số: 1.
Ta có \(y' = 3{x^2} - 4x + 1\). \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{1}{3}\end{array} \right.\).
Bảng biến thiên của hàm số đã cho:
Vậy đồ thị hàm số đã cho có điểm cực tiểu là \(A\left( {1; - 1} \right)\). Khoảng cách từ điểm cực tiểu của đồ thị hàm số đã cho đến trục hoành bằng 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.