Câu hỏi:

30/09/2025 11 Lưu

Cho hàm số bậc ba \(f\left( x \right)\) có bảng biến thiên sau.

Cho hàm số bậc ba \(f\left( x \right)\) có bảng biến thiên sau.     Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( x \right) = 2m + 1\) có ba nghiệm phân biệt A. 2.	B. 3.	C. 1.	D. 4. (ảnh 1)
Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( x \right) = 2m + 1\) có ba nghiệm phân biệt

A. 2.                           
B. 3.                         
C. 1.                               
D. 4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào bảng biến thiên, phương trình \(f\left( x \right) = 2m + 1\) có ba nghiệm phân biệt khi

                                  \( - 1 < 2m + 1 < 3 \Leftrightarrow  - 1 < m < 1\).

Vì \(m\)nguyên nên \(m = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có\(y' = 3{x^2} - 6x - m\).

Hàm số đồng biến trên khi \(y' \ge 0,\;\forall x \in \left( {0; + \infty } \right) \Leftrightarrow 3{x^2} - 6x - m \ge 0,\;\forall x \in \left( {0; + \infty } \right)\)

\( \Leftrightarrow 3{x^2} - 6x \ge m,\;\forall x \in \left( {0; + \infty } \right)\;\quad \left( 1 \right)\)

Xét hàm số \(f\left( x \right) = 3{x^2} - 6x\;\)trên \(\left( {0; + \infty } \right)\)

Ta có \(f'\left( x \right) = 6x - 6\,,\;f'\left( x \right) = 0 \Leftrightarrow x = 1.\) Do đó \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( 1 \right) =  - 3\]

\(\left( 1 \right) \Leftrightarrow m \le  - 3.\)Kết hợp với giả thiết ta được \(m \in \left( { - 2024; - 3} \right]\). Nên có \[2021\] số nguyên thỏa mãn.

Lời giải

a) Dựa vào hình vẽ, ta thấy đồ thị \(\left( C \right)\) cắt trục \(Oy\)tại điểm có tung độ bằng \(2\).

b) Dựa vào hình vẽ, ta thấy đồ thị \(\left( C \right)\) có tiệm cận đứng là đường thẳng \(x - 1 = 0\).

c) Dựa vào hình vẽ ta thấy đồ thị hàm số \(y = f\left( x \right)\)có hai cực trị trong đó \({y_{CT}} > {y_{C{\rm{D}}}}\).

d) Dựa vào hình vẽ ta thấy Hai đường tiệm cận của đồ thị cùng với trục tạo thành tam giác có diện tích bằng \(S = \frac{1}{2}.4.4 = 8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = \frac{{{x^2} + x - 1}}{{x - 1}}\).      
B. \(y = \frac{{{x^2} + x + 1}}{{x - 1}}\).                   
C. \(y = \frac{{{x^2} + x - 1}}{{x + 1}}\).                   
D. \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP