Câu hỏi:

30/09/2025 45 Lưu

Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh tại thời điểm xuất hiện bệnh nhân đầu tiên đến ngày thứ \(t\)\(f\left( t \right) = 4{t^3} - \frac{{{t^4}}}{2}\) (người). Nếu xem \(f'\left( t \right)\) là tốc độ truyền bệnh (người/ngày) tại thời điểm \(t\)với \(t \in \left[ {0;6} \right]\). Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

A. 5.                      
B. 3.                                              
C. 6.                                                                     
D. 4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\)\(g\left( t \right) = f'\left( t \right) = 12{t^2} - 2{t^3}\) với \(t \in \left[ {0;6} \right]\).

\(g'\left( t \right) = 24t - 6{t^2}\); \(g'\left( t \right) = 0 \Leftrightarrow 24t - 6{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 4\end{array} \right.\).

Khi đó, \(g\left( 0 \right) = 0\);  \(g\left( 4 \right) = 64\);  \(g\left( 6 \right) = 0\).

Vậy tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số đã cho xác định và liên tục trên \(\left( { - \infty ; - 1} \right) \cup \left( { - 1; + \infty } \right)\)

\(y = \frac{{m{x^2} + \left( {{m^2} + m + 2} \right)x + {m^2} + 3}}{{x + 1}} = mx + {m^2} + 2 + \frac{1}{{x + 1}},x \ne  - 1\)

Vì \(\mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{x + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{x + 1}} = 0\) nên \(\left( d \right):y = mx + {m^2} + 2\) \( \Leftrightarrow \left( d \right):mx - y + {m^2} + 2 = 0\) là đường cận xiên hoặc ngang của hàm số.

Ta có: \(d\left( {O;d} \right) = \frac{{\left| {{m^2} + 2} \right|}}{{\sqrt {{m^2} + 1} }} = \sqrt {{m^2} + 1}  + \frac{1}{{\sqrt {{m^2} + 1} }} \ge 2\)

Vậy \(d\left( {O;d} \right)\) nhỏ nhất bằng \(2\) khi \(\sqrt {{m^2} + 1}  = \frac{1}{{\sqrt {{m^2} + 1} }} \Leftrightarrow m = 0\).

Khi đó hàm số có tiệm cận ngang là \(y = 2\).

Lời giải

Ta có\(y' = 3{x^2} - 6x - m\).

Hàm số đồng biến trên khi \(y' \ge 0,\;\forall x \in \left( {0; + \infty } \right) \Leftrightarrow 3{x^2} - 6x - m \ge 0,\;\forall x \in \left( {0; + \infty } \right)\)

\( \Leftrightarrow 3{x^2} - 6x \ge m,\;\forall x \in \left( {0; + \infty } \right)\;\quad \left( 1 \right)\)

Xét hàm số \(f\left( x \right) = 3{x^2} - 6x\;\)trên \(\left( {0; + \infty } \right)\)

Ta có \(f'\left( x \right) = 6x - 6\,,\;f'\left( x \right) = 0 \Leftrightarrow x = 1.\) Do đó \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( 1 \right) =  - 3\]

\(\left( 1 \right) \Leftrightarrow m \le  - 3.\)Kết hợp với giả thiết ta được \(m \in \left( { - 2024; - 3} \right]\). Nên có \[2021\] số nguyên thỏa mãn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = \frac{{3x + 2}}{{x - 1}}\).                
B. \(y = \frac{{ - 2x + 4}}{{x - 1}}\).                          
C. \(y = \frac{{2x + 3}}{{x - 1}}\).                             
D. \(y = \frac{{2x + 1}}{{ - x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 2.                           
B. 3.                         
C. 1.                               
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP